Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 275 (38): 29207-29216

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

A Novel Plant Glutathione S-Transferase/Peroxidase Suppresses Bax Lethality in Yeast*

Sotirios C. Kampranis{ddagger}§, Radostina Damianova{ddagger}§, Mirna Atallah{ddagger}§, Garabet Toby, Greta Kondi{ddagger}, Philip N. Tsichlis||, , and Antonios M. Makris{ddagger}**

From the {ddagger}Mediterranean Agronomic Institute of Chania, Chania 73100, Greece, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, and ||Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

ABSTRACT Back to Top

Abstract: The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class {theta} glutathioneS-transferases. This Bax-inhibiting (BI) protein was expressed in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane potential, and alters the intracellular redox potential. Co-expression of the BI-GST/GPX protein brought the total glutathione levels back to normal and re-established the mitochondrial membrane potential but had no effect on the phospholipid alterations. Moreover, expression of BI-GST/GPX in yeast was found to significantly enhance resistance to H2O2-induced stress. These results underline the relationship between oxidative stress and Bax-induced death in yeast cells and demonstrate that the yeast-based genetic strategy described here is a powerful tool for the isolation of novel antioxidant and antiapoptotic genes.


Received for publication March 21, 2000. Revision received May 22, 2000.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth.
M. G. Ivanchenko, D. den Os, G. B. Monshausen, J. G. Dubrovsky, A. Bednarova, and N. Krishnan (2013)
Ann. Bot. 112, 1107-1116
   Abstract »    Full Text »    PDF »
Structural and Functional Evolution of Positively Selected Sites in Pine Glutathione S-Transferase Enzyme Family.
T. Lan, X.-R. Wang, and Q.-Y. Zeng (2013)
J. Biol. Chem. 288, 24441-24451
   Abstract »    Full Text »    PDF »
Early antioxidative defence responses in the aquatic worms (Limnodrilus sp.) in Porsuk Creek in Eskisehir (Turkey).
E. Oztetik, A. Cicek, and N. Arslan (2013)
Toxicology and Industrial Health 29, 541-554
   Abstract »    PDF »
A Glutathione S-Transferase Regulated by Light and Hormones Participates in the Modulation of Arabidopsis Seedling Development.
H.-W. Jiang, M.-J. Liu, I.-C. Chen, C.-H. Huang, L.-Y. Chao, and H.-L. Hsieh (2010)
Plant Physiology 154, 1646-1658
   Abstract »    Full Text »    PDF »
Extensive Functional Diversification of the Populus Glutathione S-Transferase Supergene Family.
T. Lan, Z.-L. Yang, X. Yang, Y.-J. Liu, X.-R. Wang, and Q.-Y. Zeng (2009)
PLANT CELL 21, 3749-3766
   Abstract »    Full Text »    PDF »
Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by Phytophthora sojae effector Avr1b.
D. Dou, S. D. Kale, X. Wang, Y. Chen, Q. Wang, X. Wang, R. H.Y. Jiang, F. D. Arredondo, R. G. Anderson, P. B. Thakur, et al. (2008)
PLANT CELL 20, 1118-1133
   Abstract »    Full Text »    PDF »
Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast.
O. Odat, S. Matta, H. Khalil, S. C. Kampranis, R. Pfau, P. N. Tsichlis, and A. M. Makris (2007)
J. Biol. Chem. 282, 36010-36023
   Abstract »    Full Text »    PDF »
Programmed Cell Death-Involved Aluminum Toxicity in Yeast Alleviated by Antiapoptotic Members with Decreased Calcium Signals.
K. Zheng, J.-W. Pan, L. Ye, Y. Fu, H.-Z. Peng, B.-Y. Wan, Q. Gu, H.-W. Bian, N. Han, J.-H. Wang, et al. (2007)
Plant Physiology 143, 38-49
   Abstract »    Full Text »    PDF »
A Novel Arabidopsis Gene Causes Bax-like Lethality in Saccharomyces cerevisiae.
M. Kawai-Yamada, Y. Saito, L. Jin, T. Ogawa, K.-M. Kim, L.-H. Yu, Y. Tone, A. Hirata, M. Umeda, and H. Uchimiya (2005)
J. Biol. Chem. 280, 39468-39473
   Abstract »    Full Text »    PDF »
Functional Analysis of Arabidopsis Ethylene-Responsive Element Binding Protein Conferring Resistance to Bax and Abiotic Stress-Induced Plant Cell Death.
T. Ogawa, L. Pan, M. Kawai-Yamada, L.-H. Yu, S. Yamamura, T. Koyama, S. Kitajima, M. Ohme-Takagi, F. Sato, and H. Uchimiya (2005)
Plant Physiology 138, 1436-1445
   Abstract »    Full Text »    PDF »
Tomato Phospholipid Hydroperoxide Glutathione Peroxidase Inhibits Cell Death Induced by Bax and Oxidative Stresses in Yeast and Plants.
S. Chen, Z. Vaghchhipawala, W. Li, H. Asard, and M. B. Dickman (2004)
Plant Physiology 135, 1630-1641
   Abstract »    Full Text »    PDF »
Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress.
K. G. Kilili, N. Atanassova, A. Vardanyan, N. Clatot, K. Al-Sabarna, P. N. Kanellopoulos, A. M. Makris, and S. C. Kampranis (2004)
J. Biol. Chem. 279, 24540-24551
   Abstract »    Full Text »    PDF »
Use of cDNA Microarrays To Monitor Transcriptional Responses of the Chestnut Blight Fungus Cryphonectria parasitica to Infection by Virulence-Attenuating Hypoviruses.
T. D. Allen, A. L. Dawe, and D. L. Nuss (2003)
Eukaryot. Cell 2, 1253-1265
   Abstract »    Full Text »    PDF »
The Specific Interaction of Dinitrosyl-Diglutathionyl-Iron Complex, a Natural NO Carrier, with the Glutathione Transferase Superfamily: SUGGESTION FOR AN EVOLUTIONARY PRESSURE IN THE DIRECTION OF THE STORAGE OF NITRIC OXIDE.
F. D. Maria, J. Z. Pedersen, A. M. Caccuri, G. Antonini, P. Turella, L. Stella, M. L. Bello, G. Federici, and G. Ricci (2003)
J. Biol. Chem. 278, 42283-42293
   Abstract »    Full Text »    PDF »
The Rapid Induction of Glutathione S-Transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the Result of Combined Salicylic Acid and Ethylene Signaling.
D. Lieberherr, U. Wagner, P.-H. Dubuis, J.-P. Metraux, and F. Mauch (2003)
Plant Cell Physiol. 44, 750-757
   Abstract »    Full Text »    PDF »
Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis.
R. Huckelhoven, C. Dechert, and K.-H. Kogel (2003)
PNAS 100, 5555-5560
   Abstract »    Full Text »    PDF »
Functional Divergence in the Glutathione Transferase Superfamily in Plants. IDENTIFICATION OF TWO CLASSES WITH PUTATIVE FUNCTIONS IN REDOX HOMEOSTASIS IN ARABIDOPSIS THALIANA.
D. P. Dixon, B. G. Davis, and R. Edwards (2002)
J. Biol. Chem. 277, 30859-30869
   Abstract »    Full Text »    PDF »
GSTB1-1 from Proteus mirabilis. A SNAPSHOT OF AN ENZYME IN THE EVOLUTIONARY PATHWAY FROM A REDOX ENZYME TO A CONJUGATING ENZYME.
A. M. Caccuri, G. Antonini, N. Allocati, C. Di Ilio, F. De Maria, F. Innocenti, M. W. Parker, M. Masulli, M. Lo Bello, P. Turella, et al. (2002)
J. Biol. Chem. 277, 18777-18784
   Abstract »    Full Text »    PDF »
Vesicle-associated Membrane Protein ofArabidopsis Suppresses Bax-induced Apoptosis in Yeast Downstream of Oxidative Burst.
A. Levine, B. Belenghi, H. Damari-Weisler, and D. Granot (2001)
J. Biol. Chem. 276, 46284-46289
   Abstract »    Full Text »    PDF »
Human Glutathione Transferase P1-1 and Nitric Oxide Carriers. A NEW ROLE FOR AN OLD ENZYME.
M. L. Bello, M. Nuccetelli, A. M. Caccuri, L. Stella, M. W. Parker, J. Rossjohn, W. J. McKinstry, A. F. Mozzi, G. Federici, F. Polizio, et al. (2001)
J. Biol. Chem. 276, 42138-42145
   Abstract »    Full Text »    PDF »
High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies.
U. Roessner, L. Willmitzer, and A. R. Fernie (2001)
Plant Physiology 127, 749-764
   Abstract »    Full Text »    PDF »
NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor.
M. D. Miramar, P. Costantini, L. Ravagnan, L. M. Saraiva, D. Haouzi, G. Brothers, J. M. Penninger, M. L. Peleato, G. Kroemer, and S. A. Susin (2001)
J. Biol. Chem. 276, 16391-16398
   Abstract »    Full Text »    PDF »
NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor.
M. D. Miramar, P. Costantini, L. Ravagnan, L. M. Saraiva, D. Haouzi, G. Brothers, J. M. Penninger, M. L. Peleato, G. Kroemer, and S. A. Susin (2001)
J. Biol. Chem. 276, 16391-16398
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882