Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 275 (38): 29881-29886

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

Overexpression of Membrane Domain of SCAP Prevents Sterols from Inhibiting SCAP·SREBP Exit from Endoplasmic Reticulum*

Tong Yang, Joseph L. Goldstein{ddagger}, , and Michael S. Brown

From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046

ABSTRACT Back to Top

Abstract: SCAP (SREBP cleavage-activating protein) forms a complex with sterol regulatory element-binding proteins (SREBPs) and escorts them from the endoplasmic reticulum (ER) to the Golgi complex where proteases release transcriptionally active segments of SREBPs, which enter the nucleus to activate lipid synthesis. The NH2-terminal segment of SCAP contains eight transmembrane helices, five of which (TM2–6) comprise the sterol-sensing domain. This domain responds to sterols by causing the SCAP·SREBP complex to be retained in the ER, preventing proteolytic release and reducing transcription of lipogenic genes. Here, we use transfection techniques to overexpress a segment of SCAP containing transmembrane helices 1–6 in hamster and human cells. This segment does not interfere with SCAP·SREBP movement to the Golgi in the absence of sterols, but it prevents sterols from suppressing this movement. This block is abolished when SCAP(TM1–6) contains a point mutation (Y298C) that is known to abolish the activity of the sterol-sensing domain. We interpret these findings to indicate that sterols cause the SCAP·SREBP complex to bind to an ER retention protein through an interaction that involves the sterol-sensing domain. The SCAP(TM1–6) segment competes with the SCAP·SREBP complex for binding to this putative retention protein, thereby liberating the SCAP·SREBP complex so that it can move to the Golgi despite the presence of sterols. These studies provide a potential mechanistic explanation for the ability of sterols to block SCAP·SREBP movement from the ER and thereby to control lipid synthesis in animal cells.


Received for publication June 21, 2000. Revision received July 11, 2000.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Point Mutation in Luminal Loop 7 of Scap Protein Blocks Interaction with Loop 1 and Abolishes Movement to Golgi.
Y. Zhang, M. Motamed, J. Seemann, M. S. Brown, and J. L. Goldstein (2013)
J. Biol. Chem. 288, 14059-14067
   Abstract »    Full Text »    PDF »
ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter.
E. J. Tarling and P. A. Edwards (2011)
PNAS 108, 19719-19724
   Abstract »    Full Text »    PDF »
Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL.
M. S. Brown and J. L. Goldstein (2009)
J. Lipid Res. 50, S15-S27
   Abstract »    Full Text »    PDF »
Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance: a comparative study in human hepatic cells and mesangial cells.
Y. Chen, X. Z. Ruan, Q. Li, A. Huang, J. F. Moorhead, S. H. Powis, and Z. Varghese (2007)
Am J Physiol Renal Physiol 293, F680-F687
   Abstract »    Full Text »    PDF »
CREB4, a Transmembrane bZip Transcription Factor and Potential New Substrate for Regulation and Cleavage by S1P.
J. Stirling and P. O'Hare (2006)
Mol. Biol. Cell 17, 413-426
   Abstract »    Full Text »    PDF »
Insig Required for Sterol-mediated Inhibition of Scap/SREBP Binding to COPII Proteins in Vitro.
L.-P. Sun, L. Li, J. L. Goldstein, and M. S. Brown (2005)
J. Biol. Chem. 280, 26483-26490
   Abstract »    Full Text »    PDF »
Identification of an Androgen Response Element in Intron 8 of the Sterol Regulatory Element-binding Protein Cleavage-activating Protein Gene Allowing Direct Regulation by the Androgen Receptor.
H. Heemers, G. Verrijdt, S. Organe, F. Claessens, W. Heyns, G. Verhoeven, and J. V. Swinnen (2004)
J. Biol. Chem. 279, 30880-30887
   Abstract »    Full Text »    PDF »
Membrane Topology of Human Insig-1, a Protein Regulator of Lipid Synthesis.
J. D. Feramisco, J. L. Goldstein, and M. S. Brown (2004)
J. Biol. Chem. 279, 8487-8496
   Abstract »    Full Text »    PDF »
Differential effects of polyunsaturated fatty acids on sterol synthesis rates in adult and fetal tissues of the hamster: consequence of altered sterol balance.
K. E. Schmid and L. A. Woollett (2003)
Am J Physiol Gastrointest Liver Physiol 285, G796-G803
   Abstract »    Full Text »    PDF »
Low-temperature effect on the sterol-dependent processing of SREBPs and transcription of related genes in HepG2 cells.
I. Shechter, P. Dai, M. A. Roseman, S. D. Gupta, B. B. Boyer, and G. Guan (2003)
J. Lipid Res. 44, 1581-1590
   Abstract »    Full Text »    PDF »
Synergistic Activation of Human LDL Receptor Expression by SCAP Ligand and Cytokine Oncostatin M.
J. Liu, F. Zhang, C. Li, M. Lin, and M. R. Briggs (2003)
Arterioscler Thromb Vasc Biol 23, 90-96
   Abstract »    Full Text »    PDF »
The hypocholesterolemic agent LY295427 up-regulates INSIG-1, identifying the INSIG-1 protein as a mediator of cholesterol homeostasis through SREBP.
B. A. Janowski (2002)
PNAS 99, 12675-12680
   Abstract »    Full Text »    PDF »
Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins.
D. Yabe, M. S. Brown, and J. L. Goldstein (2002)
PNAS 99, 12753-12758
   Abstract »    Full Text »    PDF »
Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER.
P. J. Espenshade, W.-P. Li, and D. Yabe (2002)
PNAS 99, 11694-11699
   Abstract »    Full Text »    PDF »
MLN64 Mediates Mobilization of Lysosomal Cholesterol to Steroidogenic Mitochondria.
M. Zhang, P. Liu, N. K. Dwyer, L. K. Christenson, T. Fujimoto, F. Martinez, M. Comly, J. A. Hanover, E. J. Blanchette-Mackie, and J. F. Strauss III (2002)
J. Biol. Chem. 277, 33300-33310
   Abstract »    Full Text »    PDF »
Sterol Regulatory Element-binding Protein-1c Mimics the Negative Effect of Insulin on Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription.
K. Chakravarty, P. Leahy, D. Becard, P. Hakimi, M. Foretz, P. Ferre, F. Foufelle, and R. W. Hanson (2001)
J. Biol. Chem. 276, 34816-34823
   Abstract »    Full Text »    PDF »
Niemann-Pick Type C1 (NPC1) Overexpression Alters Cellular Cholesterol Homeostasis.
E. E. Millard, K. Srivastava, L. M. Traub, J. E. Schaffer, and D. S. Ory (2000)
J. Biol. Chem. 275, 38445-38451
   Abstract »    Full Text »    PDF »
Sterol Regulatory Element-binding Protein-1c Mimics the Negative Effect of Insulin on Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription.
K. Chakravarty, P. Leahy, D. Becard, P. Hakimi, M. Foretz, P. Ferre, F. Foufelle, and R. W. Hanson (2001)
J. Biol. Chem. 276, 34816-34823
   Abstract »    Full Text »    PDF »
The Hypocholesterolemic Agent LY295427 Reverses Suppression of Sterol Regulatory Element-binding Protein Processing Mediated by Oxysterols.
B. A. Janowski, B. Shan, and D. W. Russell (2001)
J. Biol. Chem. 276, 45408-45416
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882