Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 275 (45): 35170-35175

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

Regulation of Lef-mediated Transcription and p53-dependent Pathway by Associating β-Catenin with CBP/p300*

Makoto Miyagishi{ddagger}§, Ryouji Fujii{ddagger}§, Mitsutoki Hatta{ddagger}§, Eisaku Yoshida§, Natsumi Araya{ddagger}§, Akira Nagafuchi, Satoru Ishihara, Toshihiro Nakajima{ddagger}§, , and Akiyoshi Fukamizu{ddagger}§||

From the {ddagger}Center for Tsukuba Advanced Research Alliance, §Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, and the Department of Cell Biology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan

ABSTRACT Back to Top

Abstract: CBP and its homologue p300 play significant roles in cell differentiation, cell cycle, and anti-oncogenesis. We demonstrated that β-catenin, recently known as a potent oncogene, and CBP/p300 are associated through its CH3 region, which is a primary target of adenoviral oncoprotein E1A and various nuclear proteins, such as p53, cyclin E, and AP-1, and both are colocalized in the nuclear bodies. CBP/p300 potentiated Lef-mediated transactivation of β-catenin, and E1A, a potent inhibitor of CBP/p300, repressed its transactivation. Furthermore, overexpression of stable β-catenin mutant competitively suppressed the p53-dependent pathway. These may be a key mechanism of β-catenin involved in oncogenic events underlying disruption of tumor suppressor function through CBP/p300.


Received for publication April 17, 2000. Revision received July 7, 2000.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Human Cytomegalovirus pUL29/28 and pUL38 Repression of p53-Regulated p21CIP1 and Caspase 1 Promoters during Infection.
J. P. Savaryn, J. M. Reitsma, T. M. Bigley, B. D. Halligan, Z. Qian, D. Yu, and S. S. Terhune (2013)
J. Virol. 87, 2463-2474
   Abstract »    Full Text »    PDF »
Intersection of Hippo/YAP and Wnt/{beta}-catenin signaling pathways.
W. M. Konsavage Jr and G. S. Yochum (2013)
Acta Biochim Biophys Sin 45, 71-79
   Abstract »    Full Text »    PDF »
Drugging Wnt signalling in cancer.
P. Polakis (2012)
EMBO J. 31, 2737-2746
   Abstract »    Full Text »    PDF »
HTLV-1 bZIP factor enhances TGF-{beta} signaling through p300 coactivator.
T. Zhao, Y. Satou, K. Sugata, P. Miyazato, P. L. Green, T. Imamura, and M. Matsuoka (2011)
Blood 118, 1865-1876
   Abstract »    Full Text »    PDF »
Requirement of Cell Cycle and Apoptosis Regulator 1 for Target Gene Activation by Wnt and {beta}-Catenin and for Anchorage-independent Growth of Human Colon Carcinoma Cells.
C.-Y. Ou, J. H. Kim, C. K. Yang, and M. R. Stallcup (2009)
J. Biol. Chem. 284, 20629-20637
   Abstract »    Full Text »    PDF »
Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors.
M. Shin, H. Nagai, and G. Sheng (2009)
Development 136, 595-603
   Abstract »    Full Text »    PDF »
CHD8 Is an ATP-Dependent Chromatin Remodeling Factor That Regulates {beta}-Catenin Target Genes.
B. A. Thompson, V. Tremblay, G. Lin, and D. A. Bochar (2008)
Mol. Cell. Biol. 28, 3894-3904
   Abstract »    Full Text »    PDF »
Wingless Signaling Induces Widespread Chromatin Remodeling of Target Loci.
D. S. Parker, Y. Y. Ni, J. L. Chang, J. Li, and K. M. Cadigan (2008)
Mol. Cell. Biol. 28, 1815-1828
   Abstract »    Full Text »    PDF »
Mechanistic insights from structural studies of beta-catenin and its binding partners.
W. Xu and D. Kimelman (2007)
J. Cell Sci. 120, 3337-3344
   Abstract »    Full Text »    PDF »
CBP/p300 are bimodal regulators of Wnt signaling.
J. Li, C. Sutter, D. S. Parker, T. Blauwkamp, M. Fang, and K. M. Cadigan (2007)
EMBO J. 26, 2284-2294
   Abstract »    Full Text »    PDF »
Role of GAC63 in transcriptional activation mediated by {beta}-catenin.
Y.-H. Chen, C. K. Yang, M. Xia, C.-Y. Ou, and M. R. Stallcup (2007)
Nucleic Acids Res. 35, 2084-2092
   Abstract »    Full Text »    PDF »
Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes.
A. Rossi, R. Mukerjee, P. Ferrante, K. Khalili, S. Amini, and B. E. Sawaya (2006)
J. Gen. Virol. 87, 1613-1623
   Abstract »    Full Text »    PDF »
The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes..
J. Sierra, T. Yoshida, C. A. Joazeiro, and K. A. Jones (2006)
Genes & Dev. 20, 586-600
   Abstract »    Full Text »    PDF »
Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay.
K. Osafune, M. Takasato, A. Kispert, M. Asashima, and R. Nishinakamura (2006)
Development 133, 151-161
   Abstract »    Full Text »    PDF »
p300 Modulates ATF4 Stability and Transcriptional Activity Independently of Its Acetyltransferase Domain.
I. Lassot, E. Estrabaud, S. Emiliani, M. Benkirane, R. Benarous, and F. Margottin-Goguet (2005)
J. Biol. Chem. 280, 41537-41545
   Abstract »    Full Text »    PDF »
TIS7 Regulation of the {beta}-Catenin/Tcf-4 Target Gene Osteopontin (OPN) Is Histone Deacetylase-dependent.
I. Vietor, R. Kurzbauer, G. Brosch, and L. A. Huber (2005)
J. Biol. Chem. 280, 39795-39801
   Abstract »    Full Text »    PDF »
Cited1 Is a Bifunctional Transcriptional Cofactor That Regulates Early Nephronic Patterning.
S. Plisov, M. Tsang, G. Shi, S. Boyle, K. Yoshino, S. L. Dunwoodie, I. B. Dawid, T. Shioda, A. O. Perantoni, and M. P. de Caestecker (2005)
J. Am. Soc. Nephrol. 16, 1632-1644
   Abstract »    Full Text »    PDF »
Glucocorticoids Inhibit the Transcriptional Activity of LEF/TCF in Differentiating Osteoblasts in a Glycogen Synthase Kinase-3{beta}-dependent and -independent Manner.
E. Smith and B. Frenkel (2005)
J. Biol. Chem. 280, 2388-2394
   Abstract »    Full Text »    PDF »
Interaction and Functional Cooperation between the LIM Protein FHL2, CBP/p300, and {beta}-Catenin.
C. Labalette, C.-A. Renard, C. Neuveut, M.-A. Buendia, and Y. Wei (2004)
Mol. Cell. Biol. 24, 10689-10702
   Abstract »    Full Text »    PDF »
Maternal {beta}-catenin and E-cadherin in mouse development.
W. N. de Vries, A. V. Evsikov, B. E. Haac, K. S. Fancher, A. E. Holbrook, R. Kemler, D. Solter, and B. B. Knowles (2004)
Development 131, 4435-4445
   Abstract »    Full Text »    PDF »
Control of siRNA expression using the Cre-loxP recombination system.
V. Kasim, M. Miyagishi, and K. Taira (2004)
Nucleic Acids Res. 32, e66
   Abstract »    Full Text »    PDF »
Acetylation of {beta}-Catenin by p300 Regulates {beta}-Catenin-Tcf4 Interaction.
L. Levy, Y. Wei, C. Labalette, Y. Wu, C.-A. Renard, M. A. Buendia, and C. Neuveut (2004)
Mol. Cell. Biol. 24, 3404-3414
   Abstract »    Full Text »    PDF »
Synergistic Effects of Coactivators GRIP1 and {beta}-Catenin on Gene Activation: CROSS-TALK BETWEEN ANDROGEN RECEPTOR AND Wnt SIGNALING PATHWAYS.
H. Li, J. H. Kim, S. S. Koh, and M. R. Stallcup (2004)
J. Biol. Chem. 279, 4212-4220
   Abstract »    Full Text »    PDF »
The PDZ Protein Tax-interacting Protein-1 Inhibits {beta}-Catenin Transcriptional Activity and Growth of Colorectal Cancer Cells.
M. Kanamori, P. Sandy, S. Marzinotto, R. Benetti, C. Kai, Y. Hayashizaki, C. Schneider, and H. Suzuki (2003)
J. Biol. Chem. 278, 38758-38764
   Abstract »    Full Text »    PDF »
A Direct {beta}-Catenin-independent Interaction between Androgen Receptor and T Cell Factor 4.
A. L. Amir, M. Barua, N. C. McKnight, S. Cheng, X. Yuan, and S. P. Balk (2003)
J. Biol. Chem. 278, 30828-30834
   Abstract »    Full Text »    PDF »
T-Cell Factor 4N (TCF-4N), a Novel Isoform of Mouse TCF-4, Synergizes with {beta}-Catenin To Coactivate C/EBP{alpha} and Steroidogenic Factor 1 Transcription Factors.
J. A. Kennell, E. E. O'Leary, B. M. Gummow, G. D. Hammer, and O. A. MacDougald (2003)
Mol. Cell. Biol. 23, 5366-5375
   Abstract »    Full Text »    PDF »
Transcriptional Co-activators CREB-binding Protein and p300 Regulate Chondrocyte-specific Gene Expression via Association with Sox9.
M. Tsuda, S. Takahashi, Y. Takahashi, and H. Asahara (2003)
J. Biol. Chem. 278, 27224-27229
   Abstract »    Full Text »    PDF »
Antithetic Effects of MBD2a on Gene Regulation.
H. Fujita, R. Fujii, S. Aratani, T. Amano, A. Fukamizu, and T. Nakajima (2003)
Mol. Cell. Biol. 23, 2645-2657
   Abstract »    Full Text »    PDF »
Hepatocyte Nuclear Factor-4 Is a Novel Downstream Target of Insulin via FKHR as a Signal-regulated Transcriptional Inhibitor.
K. Hirota, H. Daitoku, H. Matsuzaki, N. Araya, K. Yamagata, S. Asada, T. Sugaya, and A. Fukamizu (2003)
J. Biol. Chem. 278, 13056-13060
   Abstract »    Full Text »    PDF »
Identification of the LIM Protein FHL2 as a Coactivator of {beta}-Catenin.
Y. Wei, C.-A. Renard, C. Labalette, Y. Wu, L. Levy, C. Neuveut, X. Prieur, M. Flajolet, S. Prigent, and M.-A. Buendia (2003)
J. Biol. Chem. 278, 5188-5194
   Abstract »    Full Text »    PDF »
Cooperative Interaction of EWS with CREB-binding Protein Selectively Activates Hepatocyte Nuclear Factor 4-mediated Transcription.
N. Araya, K. Hirota, Y. Shimamoto, M. Miyagishi, E. Yoshida, J. Ishida, S. Kaneko, M. Kaneko, T. Nakajima, and A. Fukamizu (2003)
J. Biol. Chem. 278, 5427-5432
   Abstract »    Full Text »    PDF »
Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo.
P. Agarwal, J. N. Wylie, J. Galceran, O. Arkhitko, C. Li, C. Deng, R. Grosschedl, and B. G. Bruneau (2003)
Development 130, 623-633
   Abstract »    Full Text »    PDF »
Identification of a Promoter-specific Transcriptional Activation Domain at the C Terminus of the Wnt Effector Protein T-cell Factor 4.
A. Hecht and M. P. Stemmler (2003)
J. Biol. Chem. 278, 3776-3785
   Abstract »    Full Text »    PDF »
PML Is a Target Gene of {beta}-Catenin and Plakoglobin, and Coactivates {beta}-Catenin-mediated Transcription.
M. Shtutman, J. Zhurinsky, M. Oren, E. Levina, and A. Ben-Ze'ev (2002)
Cancer Res. 62, 5947-5954
   Abstract »    Full Text »    PDF »
Predicting transcription factor synergism.
S. Hannenhalli and S. Levy (2002)
Nucleic Acids Res. 30, 4278-4284
   Abstract »    Full Text »    PDF »
Synergistic Coactivator Function by Coactivator-associated Arginine Methyltransferase (CARM) 1 and {beta}-Catenin with Two Different Classes of DNA-binding Transcriptional Activators.
S. S. Koh, H. Li, Y.-H. Lee, R. B. Widelitz, C.-M. Chuong, and M. R. Stallcup (2002)
J. Biol. Chem. 277, 26031-26035
   Abstract »    Full Text »    PDF »
T-cell factors: turn-ons and turn-offs.
A. Hurlstone and H. Clevers (2002)
EMBO J. 21, 2303-2311
   Full Text »    PDF »
Possible Role of Transcriptional Coactivator P/CAF and Nuclear Acetylation in Calcium-induced Keratinocyte Differentiation.
H. Kawabata, K.-i. Kawahara, T. Kanekura, N. Araya, H. Daitoku, M. Hatta, N. Miura, A. Fukamizu, T. Kanzaki, I. Maruyama, et al. (2002)
J. Biol. Chem. 277, 8099-8105
   Abstract »    Full Text »    PDF »
Chromatin-specific regulation of LEF-1-beta -catenin transcription activation and inhibition in vitro.
A. V. Tutter, C. J. Fryer, and K. A. Jones (2001)
Genes & Dev. 15, 3342-3354
   Abstract »    Full Text »    PDF »
Regulation and Possible Function of {beta}-Catenin in Human Monocytes.
A. Thiele, M. Wasner, C. Muller, K. Engeland, and S. Hauschildt (2001)
J. Immunol. 167, 6786-6793
   Abstract »    Full Text »    PDF »
Suppressor of Fused Negatively Regulates {beta}-Catenin Signaling.
X. Meng, R. Poon, X. Zhang, A. Cheah, Q. Ding, C.-c. Hui, and B. Alman (2001)
J. Biol. Chem. 276, 40113-40119
   Abstract »    Full Text »    PDF »
Down-Regulation of {beta}-Catenin by Activated p53.
E. Sadot, B. Geiger, M. Oren, and A. Ben-Ze'ev (2001)
Mol. Cell. Biol. 21, 6768-6781
   Abstract »    Full Text »    PDF »
PODs in the Nuclear Spot: Enigmas in the Magician's Pot.
M. Hatta and A. Fukamizu (2001)
Sci. STKE 2001, pe1
   Abstract »    Full Text »    PDF »
Dual Roles of RNA Helicase A in CREB-Dependent Transcription.
S. Aratani, R. Fujii, T. Oishi, H. Fujita, T. Amano, T. Ohshima, M. Hagiwara, A. Fukamizu, and T. Nakajima (2001)
Mol. Cell. Biol. 21, 4460-4469
   Abstract »    Full Text »    PDF »
Regulation of {beta}-Catenin Structure and Activity by Tyrosine Phosphorylation.
J. Piedra, D. Martinez, J. Castano, S. Miravet, M. Dunach, and A. G. de Herreros (2001)
J. Biol. Chem. 276, 20436-20443
   Abstract »    Full Text »    PDF »
Stabilized {beta}-Catenin Immortalizes Colonic Epithelial Cells.
R. A. Wagenaar, H. C. Crawford, and L. M. Matrisian (2001)
Cancer Res. 61, 2097-2104
   Abstract »    Full Text »
Regulation of {beta}-Catenin Structure and Activity by Tyrosine Phosphorylation.
J. Piedra, D. Martinez, J. Castano, S. Miravet, M. Dunach, and A. G. de Herreros (2001)
J. Biol. Chem. 276, 20436-20443
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882