Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 275 (46): 35902-35907

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

Transmembrane Redox Sensor of Ryanodine Receptor Complex*

Wei Feng{ddagger}, Guohua Liu{ddagger}, Paul D. Allen§, , and Isaac N. Pessah{ddagger}

From the {ddagger}Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616 and the §Department of Anesthesia, Brigham and Women's Hospital, Boston, Massachusetts 02114

ABSTRACT Back to Top

Abstract: Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca2+ release channels and the fidelity of Ca2+release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca2+release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028–33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca2+channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca2+ release from stores.


Received for publication August 4, 2000. Revision received September 19, 2000.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Hypoxic Pulmonary Vasoconstriction.
J. T. Sylvester, L. A. Shimoda, P. I. Aaronson, and J. P. T. Ward (2012)
Physiol Rev 92, 367-520
   Abstract »    Full Text »    PDF »
Protein Folding and Quality Control in the ER.
K. Araki and K. Nagata (2011)
Cold Spring Harb Perspect Biol 3, a007526
   Abstract »    Full Text »    PDF »
Functional and Biochemical Properties of Ryanodine Receptor Type 1 Channels from Heterozygous R163C Malignant Hyperthermia-Susceptible Mice.
W. Feng, G. C. Barrientos, G. Cherednichenko, T. Yang, I. T. Padilla, K. Truong, P. D. Allen, J. R. Lopez, and I. N. Pessah (2011)
Mol. Pharmacol. 79, 420-431
   Abstract »    Full Text »    PDF »
The Na+/Ca2+ Exchange Inhibitor 2-(2-(4-(4-Nitrobenzyloxy)phenyl)ethyl)isothiourea Methanesulfonate (KB-R7943) Also Blocks Ryanodine Receptors Type 1 (RyR1) and Type 2 (RyR2) Channels.
G. Barrientos, D. D. Bose, W. Feng, I. Padilla, and I. N. Pessah (2009)
Mol. Pharmacol. 76, 560-568
   Abstract »    Full Text »    PDF »
NADPH Oxidase and Hydrogen Peroxide Mediate Insulin-induced Calcium Increase in Skeletal Muscle Cells.
A. Espinosa, A. Garcia, S. Hartel, C. Hidalgo, and E. Jaimovich (2009)
J. Biol. Chem. 284, 2568-2575
   Abstract »    Full Text »    PDF »
Redox Modification of Ryanodine Receptors Contributes to Sarcoplasmic Reticulum Ca2+ Leak in Chronic Heart Failure.
D. Terentyev, I. Gyorke, A. E. Belevych, R. Terentyeva, A. Sridhar, Y. Nishijima, E. Carcache de Blanco, S. Khanna, C. K. Sen, A. J. Cardounel, et al. (2008)
Circ. Res. 103, 1466-1472
   Abstract »    Full Text »    PDF »
Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle.
M. J. Jurynec, R. Xia, J. J. Mackrill, D. Gunther, T. Crawford, K. M. Flanigan, J. J. Abramson, M. T. Howard, and D. J. Grunwald (2008)
PNAS 105, 12485-12490
   Abstract »    Full Text »    PDF »
Reactive oxygen species contribute to Ca2+ signals produced by osmotic stress in mouse skeletal muscle fibres.
A. S. Martins, V. M. Shkryl, M. C. Nowycky, and N. Shirokova (2008)
J. Physiol. 586, 197-210
   Abstract »    Full Text »    PDF »
Cellular redox state protects acetaldehyde-induced alteration in cardiomyocyte function by modifying Ca2+ release from sarcoplasmic reticulum.
T. Oba, Y. Maeno, M. Nagao, N. Sakuma, and T. Murayama (2008)
Am J Physiol Heart Circ Physiol 294, H121-H133
   Abstract »    Full Text »    PDF »
Conformation-dependent Stability of Junctophilin 1 (JP1) and Ryanodine Receptor Type 1 (RyR1) Channel Complex Is Mediated by Their Hyper-reactive Thiols.
A. J. Phimister, J. Lango, E. H. Lee, M. A. Ernst-Russell, H. Takeshima, J. Ma, P. D. Allen, and I. N. Pessah (2007)
J. Biol. Chem. 282, 8667-8677
   Abstract »    Full Text »    PDF »
Identification of Cysteines Involved in S-Nitrosylation, S-Glutathionylation, and Oxidation to Disulfides in Ryanodine Receptor Type 1.
P. Aracena-Parks, S. A. Goonasekera, C. P. Gilman, R. T. Dirksen, C. Hidalgo, and S. L. Hamilton (2006)
J. Biol. Chem. 281, 40354-40368
   Abstract »    Full Text »    PDF »
Mitochondrial reactive oxygen species and Ca2+ signaling.
C. Camello-Almaraz, P. J. Gomez-Pinilla, M. J. Pozo, and P. J. Camello (2006)
Am J Physiol Cell Physiol 291, C1082-C1088
   Abstract »    Full Text »    PDF »
A Transverse Tubule NADPH Oxidase Activity Stimulates Calcium Release from Isolated Triads via Ryanodine Receptor Type 1 S -Glutathionylation.
C. Hidalgo, G. Sanchez, G. Barrientos, and P. Aracena-Parks (2006)
J. Biol. Chem. 281, 26473-26482
   Abstract »    Full Text »    PDF »
Redox regulation of cardiac calcium channels and transporters.
A. V. Zima and L. A. Blatter (2006)
Cardiovasc Res 71, 310-321
   Abstract »    Full Text »    PDF »
Characteristics and actions of NAD(P)H oxidase on the sarcoplasmic reticulum of coronary artery smooth muscle.
X.-Y. Yi, V. X. Li, F. Zhang, F. Yi, D. R. Matson, M. T. Jiang, and P.-L. Li (2006)
Am J Physiol Heart Circ Physiol 290, H1136-H1144
   Abstract »    Full Text »    PDF »
Ryanodine Receptor Type 1 (RyR1) Mutations C4958S and C4961S Reveal Excitation-coupled Calcium Entry (ECCE) Is Independent of Sarcoplasmic Reticulum Store Depletion.
A. M. Hurne, J. J. O'Brien, D. Wingrove, G. Cherednichenko, P. D. Allen, K. G. Beam, and I. N. Pessah (2005)
J. Biol. Chem. 280, 36994-37004
   Abstract »    Full Text »    PDF »
Identification of Hyperreactive Cysteines within Ryanodine Receptor Type 1 by Mass Spectrometry.
A. A. Voss, J. Lango, M. Ernst-Russell, D. Morin, and I. N. Pessah (2004)
J. Biol. Chem. 279, 34514-34520
   Abstract »    Full Text »    PDF »
Glutathione Limits Ero1-dependent Oxidation in the Endoplasmic Reticulum.
S. N. Molteni, A. Fassio, M. R. Ciriolo, G. Filomeni, E. Pasqualetto, C. Fagioli, and R. Sitia (2004)
J. Biol. Chem. 279, 32667-32673
   Abstract »    Full Text »    PDF »
Acetaldehyde alters Ca2+-release channel gating and muscle contraction in a dose-dependent manner.
T. Oba and Y. Maeno (2004)
Am J Physiol Cell Physiol 286, C1188-C1194
   Abstract »    Full Text »    PDF »
NADH Oxidase Activity of Rat Cardiac Sarcoplasmic Reticulum Regulates Calcium-Induced Calcium Release.
G. Cherednichenko, A. V. Zima, W. Feng, S. Schaefer, L. A. Blatter, and I. N. Pessah (2004)
Circ. Res. 94, 478-486
   Abstract »    Full Text »    PDF »
S-Glutathionylation Decreases Mg2+ Inhibition and S-Nitrosylation Enhances Ca2+ Activation of RyR1 Channels.
P. Aracena, G. Sanchez, P. Donoso, S. L. Hamilton, and C. Hidalgo (2003)
J. Biol. Chem. 278, 42927-42935
   Abstract »    Full Text »    PDF »
Identification of a Key Determinant of Ryanodine Receptor Type 1 Required for Activation by 4-Chloro-m-cresol.
J. D. Fessenden, C. F. Perez, S. Goth, I. N. Pessah, and P. D. Allen (2003)
J. Biol. Chem. 278, 28727-28735
   Abstract »    Full Text »    PDF »
SH oxidation coordinates subunits of rat brain ryanodine receptor channels activated by calcium and ATP.
R. Bull, J. J. Marengo, J. P. Finkelstein, M. I. Behrens, and O. Alvarez (2003)
Am J Physiol Cell Physiol 285, C119-C128
   Abstract »    Full Text »    PDF »
Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide.
R. Xia, J. A. Webb, L. L. M. Gnall, K. Cutler, and J. J. Abramson (2003)
Am J Physiol Cell Physiol 285, C215-C221
   Abstract »    Full Text »    PDF »
Glucosylceramide and Glucosylsphingosine Modulate Calcium Mobilization from Brain Microsomes via Different Mechanisms.
E. Lloyd-Evans, D. Pelled, C. Riebeling, J. Bodennec, A. de-Morgan, H. Waller, R. Schiffmann, and A. H. Futerman (2003)
J. Biol. Chem. 278, 23594-23599
   Abstract »    Full Text »    PDF »
Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
G S Posterino, M A Cellini, and G D Lamb (2003)
J. Physiol. 547, 807-823
   Abstract »    Full Text »    PDF »
Nitric Oxide, NOC-12, and S-Nitrosoglutathione Modulate the Skeletal Muscle Calcium Release Channel/Ryanodine Receptor by Different Mechanisms. AN ALLOSTERIC FUNCTION FOR O2 IN S-NITROSYLATION OF THE CHANNEL.
J. Sun, L. Xu, J. P. Eu, J. S. Stamler, and G. Meissner (2003)
J. Biol. Chem. 278, 8184-8189
   Abstract »    Full Text »    PDF »
Effects of oxidation and reduction on contractile function in skeletal muscle fibres of the rat.
G D Lamb and G S Posterino (2003)
J. Physiol. 546, 149-163
   Abstract »    Full Text »    PDF »
A Novel Topology and Redox Regulation of the Rat Brain K+-dependent Na+/Ca2+ Exchanger, NCKX2.
X. Cai, K. Zhang, and J. Lytton (2002)
J. Biol. Chem. 277, 48923-48930
   Abstract »    Full Text »    PDF »
H2O2 activates ryanodine receptor but has little effect on recovery of releasable Ca2+ content after fatigue.
T. Oba, C. Kurono, R. Nakajima, T. Takaishi, K. Ishida, G. A. Fuller, W. Klomkleaw, and M. Yamaguchi (2002)
J Appl Physiol 93, 1999-2008
   Abstract »    Full Text »    PDF »
Homer Regulates Gain of Ryanodine Receptor Type 1 Channel Complex.
W. Feng, J. Tu, T. Yang, P. S. Vernon, P. D. Allen, P. F. Worley, and I. N. Pessah (2002)
J. Biol. Chem. 277, 44722-44730
   Abstract »    Full Text »    PDF »
Critical Role of NADPH Oxidase-derived Reactive Oxygen Species in Generating Ca2+ Oscillations in Human Aortic Endothelial Cells Stimulated by Histamine.
Q. Hu, Z.-X. Yu, V. J. Ferrans, K. Takeda, K. Irani, and R. C. Ziegelstein (2002)
J. Biol. Chem. 277, 32546-32551
   Abstract »    Full Text »    PDF »
Galectin-7 (PIG1) Exhibits Pro-apoptotic Function through JNK Activation and Mitochondrial Cytochrome cRelease.
I. Kuwabara, Y. Kuwabara, R.-Y. Yang, M. Schuler, D. R. Green, B. L. Zuraw, D. K. Hsu, and F.-T. Liu (2002)
J. Biol. Chem. 277, 3487-3497
   Abstract »    Full Text »    PDF »
Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO.
J. Sun, C. Xin, J. P. Eu, J. S. Stamler, and G. Meissner (2001)
PNAS 98, 11158-11162
   Abstract »    Full Text »    PDF »
Classes of Thiols That Influence the Activity of the Skeletal Muscle Calcium Release Channel.
J. Sun, L. Xu, J. P. Eu, J. S. Stamler, and G. Meissner (2001)
J. Biol. Chem. 276, 15625-15630
   Abstract »    Full Text »    PDF »
A Bioactive Metabolite of Benzo[a]pyrene, Benzo[a]pyrene-7,8-dione, Selectively Alters Microsomal Ca2+ Transport and Ryanodine Receptor Function.
I. N. Pessah, C. Beltzner, S. W. Burchiel, G. Sridhar, T. Penning, and W. Feng (2001)
Mol. Pharmacol. 59, 506-513
   Abstract »    Full Text »    PDF »
Classes of Thiols That Influence the Activity of the Skeletal Muscle Calcium Release Channel.
J. Sun, L. Xu, J. P. Eu, J. S. Stamler, and G. Meissner (2001)
J. Biol. Chem. 276, 15625-15630
   Abstract »    Full Text »    PDF »
Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO.
J. Sun, C. Xin, J. P. Eu, J. S. Stamler, and G. Meissner (2001)
PNAS 98, 11158-11162
   Abstract »    Full Text »    PDF »
Redox states of type 1 ryanodine receptor alter Ca2+ release channel response to modulators.
T. Oba, T. Murayama, and Y. Ogawa (2002)
Am J Physiol Cell Physiol 282, C684-C692
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882