Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 275 (46): 36295-36302

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

Critical Role of Smads and AP-1 Complex in Transforming Growth Factor-β-dependent Apoptosis*

Yasuko Yamamura{ddagger}§, Xianxin Hua{ddagger}||, Svetlana Bergelson{ddagger}, , and Harvey F. Lodish{ddagger}**

From the {ddagger}Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, the **Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and the §Department of Retroviral Regulation, Tokyo Medical and Dental University Medical Research Division, Tokyo 113-8519, Japan

ABSTRACT Back to Top

Abstract: Transforming growth factor-β1 (TGF-β1) induces not only cell growth inhibition but also apoptosis in hepatocytes, myeloid cells, and epithelial cells. Although Smad proteins are identified as key signal transducers in TGF-β1-dependent growth inhibition, their roles in the induction of apoptosis are unclear. We show here that both Smad proteins and AP-1 complex are involved in TGF-β1 signaling for apoptosis. Overexpression of a dominant-negative Smad3 mutant or Smad7, both of which impair Smad-mediated signal transduction, inhibits TGF-β1-dependent apoptosis. Only the JunD·FosB form of the AP-1 complex is markedly activated during TGF-β1-dependent apoptosis. FosB substantially enhances Smad3·Smad4-dependent transcription, and dominant-negative FosB blocks TGF-β1-dependent apoptosis but not growth inhibition. Expression of JunD·FosB enhances induction of apoptosis by TGF-β1. Moreover, JunD·FosB binds to the 12-O-tetradecanoyl-13-acetate-responsive gene promoter element and recruits Smad3·Smad4 to form a multicomponent complex. These results suggest that Smad proteins and AP-1 complex synergize to mediate TGF-β1-dependent apoptosis.

Received for publication July 8, 2000. Revision received August 6, 2000.

Histone 3 Lysine 9 (H3K9) Methyltransferase Recruitment to the Interleukin-2 (IL-2) Promoter Is a Mechanism of Suppression of IL-2 Transcription by the Transforming Growth Factor-{beta}-Smad Pathway.
Y. Wakabayashi, T. Tamiya, I. Takada, T. Fukaya, Y. Sugiyama, N. Inoue, A. Kimura, R. Morita, I. Kashiwagi, T. Takimoto, et al. (2011)
J. Biol. Chem. 286, 35456-35465
   Abstract »    Full Text »    PDF »
Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration.
D. S. A. Colombari, E. Colombari, A. H. Freiria-Oliveira, V. R. Antunes, S. T. Yao, C. Hindmarch, A. V. Ferguson, M. Fry, D. Murphy, and J. F. R. Paton (2011)
J. Physiol. 589, 4457-4471
   Abstract »    Full Text »    PDF »
Regulation of Transforming Growth Factor-{beta}1-Dependent Integrin {beta}6 Expression by p38 Mitogen-Activated Protein Kinase in Bile Duct Epithelial Cells.
B. P. Sullivan, K. M. Kassel, S. Manley, A. K. Baker, and J. P. Luyendyk (2011)
J. Pharmacol. Exp. Ther. 337, 471-478
   Abstract »    Full Text »    PDF »
Helicobacter pylori Induces ERK-dependent Formation of a Phospho-c-Fos{middle dot}c-Jun Activator Protein-1 Complex That Causes Apoptosis in Macrophages.
M. Asim, R. Chaturvedi, S. Hoge, N. D. Lewis, K. Singh, D. P. Barry, H. S. Algood, T. de Sablet, A. P. Gobert, and K. T. Wilson (2010)
J. Biol. Chem. 285, 20343-20357
   Abstract »    Full Text »    PDF »
Runx1 Is a Co-activator with FOXO3 to Mediate Transforming Growth Factor {beta} (TGF{beta})-induced Bim Transcription in Hepatic Cells.
G. M. Wildey and P. H. Howe (2009)
J. Biol. Chem. 284, 20227-20239
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}-Mediated Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Expression and Apoptosis in Hepatoma Cells Requires Functional Cooperation between Smad Proteins and Activator Protein-1.
K. Herzer, A. Grosse-Wilde, P. H. Krammer, P. R. Galle, and S. Kanzler (2008)
Mol. Cancer Res. 6, 1169-1177
   Abstract »    Full Text »    PDF »
TGF-{beta}1 and IFN-{gamma} stimulate mouse macrophages to express BAFF via different signaling pathways.
H.-A Kim, S.-H. Jeon, G.-Y. Seo, J.-B. Park, and P.-H. Kim (2008)
J. Leukoc. Biol. 83, 1431-1439
   Abstract »    Full Text »    PDF »
Myocardial Matrix Remodeling and the Matrix Metalloproteinases: Influence on Cardiac Form and Function.
F. G. Spinale (2007)
Physiol Rev 87, 1285-1342
   Abstract »    Full Text »    PDF »
Smad3 Is Overexpressed in Advanced Human Prostate Cancer and Necessary for Progressive Growth of Prostate Cancer Cells in Nude Mice.
S. Lu, J. Lee, M. Revelo, X. Wang, S. Lu, and Z. Dong (2007)
Clin. Cancer Res. 13, 5692-5702
   Abstract »    Full Text »    PDF »
SIRT1 Inhibits Transforming Growth Factor beta-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation.
S. Kume, M. Haneda, K. Kanasaki, T. Sugimoto, S.-i. Araki, K. Isshiki, M. Isono, T. Uzu, L. Guarente, A. Kashiwagi, et al. (2007)
J. Biol. Chem. 282, 151-158
   Abstract »    Full Text »    PDF »
RUNX3 Inhibits the Expression of Vascular Endothelial Growth Factor and Reduces the Angiogenesis, Growth, and Metastasis of Human Gastric Cancer..
Z. Peng, D. Wei, L. Wang, H. Tang, J. Zhang, X. Le, Z. Jia, Q. Li, and K. Xie (2006)
Clin. Cancer Res. 12, 6386-6394
   Abstract »    Full Text »    PDF »
Man1, an inner nuclear membrane protein, regulates vascular remodeling by modulating transforming growth factor {beta} signaling.
A. Ishimura, J. K. Ng, M. Taira, S. G. Young, and S.-I. Osada (2006)
Development 133, 3919-3928
   Abstract »    Full Text »    PDF »
The RUNX3 Tumor Suppressor Upregulates Bim in Gastric Epithelial Cells Undergoing Transforming Growth Factor {beta}-Induced Apoptosis.
T. Yano, K. Ito, H. Fukamachi, X.-Z. Chi, H.-J. Wee, K.-i. Inoue, H. Ida, P. Bouillet, A. Strasser, S.-C. Bae, et al. (2006)
Mol. Cell. Biol. 26, 4474-4488
   Abstract »    Full Text »    PDF »
RUNX3 Cooperates with FoxO3a to Induce Apoptosis in Gastric Cancer Cells.
Y. Yamamura, W. L. Lee, K.-i. Inoue, H. Ida, and Y. Ito (2006)
J. Biol. Chem. 281, 5267-5276
   Abstract »    Full Text »    PDF »
Pathways of matrix metalloproteinase induction in heart failure: Bioactive molecules and transcriptional regulation.
A. M. Deschamps and F. G. Spinale (2006)
Cardiovasc Res 69, 666-676
   Abstract »    Full Text »    PDF »
The complex pattern of SMAD signaling in the cardiovascular system.
G. Euler-Taimor and J. Heger (2006)
Cardiovasc Res 69, 15-25
   Abstract »    Full Text »    PDF »
X-linked Inhibitor of Apoptosis (XIAP) Inhibits c-Jun N-terminal Kinase 1 (JNK1) Activation by Transforming Growth Factor {beta}1 (TGF-{beta}1) through Ubiquitin-mediated Proteosomal Degradation of the TGF-{beta}1-activated Kinase 1 (TAK1).
S. Kaur, F. Wang, M. Venkatraman, and M. Arsura (2005)
J. Biol. Chem. 280, 38599-38608
   Abstract »    Full Text »    PDF »
SMAD proteins are involved in apoptosis induction in ventricular cardiomyocytes.
D. Schneiders, J. Heger, P. Best, H. Michael Piper, and G. Taimor (2005)
Cardiovasc Res 67, 87-96
   Abstract »    Full Text »    PDF »
Loss of RUNX3 Expression Significantly Affects the Clinical Outcome of Gastric Cancer Patients and Its Restoration Causes Drastic Suppression of Tumor Growth and Metastasis.
D. Wei, W. Gong, S. C. Oh, Q. Li, W. D. Kim, L. Wang, X. Le, J. Yao, T. T. Wu, S. Huang, et al. (2005)
Cancer Res. 65, 4809-4816
   Abstract »    Full Text »    PDF »
Pertussis Toxin (PTX) B Subunit and the Nontoxic PTX Mutant PT9K/129G Inhibit Tat-Induced TGF-{beta} Production by NK Cells and TGF-{beta}-Mediated NK Cell Apoptosis.
M. R. Zocchi, P. Contini, M. Alfano, and A. Poggi (2005)
J. Immunol. 174, 6054-6061
   Abstract »    Full Text »    PDF »
Role of Transforming Growth Factor Beta in Human Cancer.
R. L. Elliott and G. C. Blobe (2005)
J. Clin. Oncol. 23, 2078-2093
   Abstract »    Full Text »    PDF »
Novel Function of Androgen Receptor-associated Protein 55/Hic-5 as a Negative Regulator of Smad3 Signaling.
H. Wang, K. Song, T. L. Sponseller, and D. Danielpour (2005)
J. Biol. Chem. 280, 5154-5162
   Abstract »    Full Text »    PDF »
Differential Activation of Smads in HeLa and SiHa Cells That Differ in Their Response to Transforming Growth Factor-{beta}.
T. T. Maliekal, R. J. Anto, and D. Karunagaran (2004)
J. Biol. Chem. 279, 36287-36292
   Abstract »    Full Text »    PDF »
Jab1/CSN5, a Component of the COP9 Signalosome, Regulates Transforming Growth Factor {beta} Signaling by Binding to Smad7 and Promoting Its Degradation.
B.-C. Kim, H.-J. Lee, S. H. Park, S. R. Lee, T. S. Karpova, J. G. McNally, A. Felici, D. K. Lee, and S.-J. Kim (2004)
Mol. Cell. Biol. 24, 2251-2262
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}1 Induces Apoptosis through Fas Ligand-independent Activation of the Fas Death Pathway in Human Gastric SNU-620 Carcinoma Cells.
S. G. Kim, H.-S. Jong, T.-Y. Kim, J. W. Lee, N. K. Kim, S. H. Hong, and Y.-J. Bang (2004)
Mol. Biol. Cell 15, 420-434
   Abstract »    Full Text »    PDF »
Insulin-like Growth Factor-I Inhibits Transcriptional Responses of Transforming Growth Factor-{beta} by Phosphatidylinositol 3-Kinase/Akt-dependent Suppression of the Activation of Smad3 but Not Smad2.
K. Song, S. C. Cornelius, M. Reiss, and D. Danielpour (2003)
J. Biol. Chem. 278, 38342-38351
   Abstract »    Full Text »    PDF »
Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells.
S. Zhang, I. Fantozzi, D. D. Tigno, E. S. Yi, O. Platoshyn, P. A. Thistlethwaite, J. M. Kriett, G. Yung, L. J. Rubin, and J. X.-J. Yuan (2003)
Am J Physiol Lung Cell Mol Physiol 285, L740-L754
   Abstract »    Full Text »    PDF »
Development and Characterization of DP-153, a Nontumorigenic Prostatic Cell Line That Undergoes Malignant Transformation by Expression of Dominant-negative Transforming Growth Factor {beta} Receptor Type II.
K. Song, S. C. Cornelius, and D. Danielpour (2003)
Cancer Res. 63, 4358-4367
   Abstract »    Full Text »    PDF »
Role of activin A in murine mast cells: modulation of cell growth, differentiation, and migration.
M. Funaba, T. Ikeda, K. Ogawa, M. Murakami, and M. Abe (2003)
J. Leukoc. Biol. 73, 793-801
   Abstract »    Full Text »    PDF »
Lens Epithelium-derived Growth Factor Relieves Transforming Growth Factor-{beta}1-induced Transcription Repression of Heat Shock Proteins in Human Lens Epithelial Cells.
P. Sharma, N. Fatma, E. Kubo, T. Shinohara, L. T. Chylack Jr., and D. P. Singh (2003)
J. Biol. Chem. 278, 20037-20046
   Abstract »    Full Text »    PDF »
Smad3 Potentiates Transforming Growth Factor {beta} (TGF{beta})-induced Apoptosis and Expression of the BH3-only Protein Bim in WEHI 231 B Lymphocytes.
G. M. Wildey, S. Patil, and P. H. Howe (2003)
J. Biol. Chem. 278, 18069-18077
   Abstract »    Full Text »    PDF »
A. Leask, A. Holmes, C. M. Black, and D. J. Abraham (2003)
J. Biol. Chem. 278, 13008-13015
   Abstract »    Full Text »    PDF »
Characterization of the Transforming Growth Factor-{beta}1-induced Apoptotic Transcriptome in FaO Hepatoma Cells.
B. Coyle, C. Freathy, T. W. Gant, R. A. Roberts, and K. Cain (2003)
J. Biol. Chem. 278, 5920-5928
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}2 Is a Transcriptional Target for Akt/Protein Kinase B via Forkhead Transcription Factor.
A. A. Samatar, L. Wang, A. Mirza, S. Koseoglu, S. Liu, and C. C. Kumar (2002)
J. Biol. Chem. 277, 28118-28126
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-{beta}1 Is Responsible for Maturation-Dependent Spontaneous Apoptosis of Cultured Gastric Pit Cells.
S. Tsutsumi, W. Tomisato, T. Hoshino, T. Tsuchiya, and T. Mizushima (2002)
Experimental Biology and Medicine 227, 402-411
   Abstract »    Full Text »    PDF »
Signal Transductions Induced by Bone Morphogenetic Protein-2 and Transforming Growth Factor-beta in Normal Human Osteoblastic Cells.
C.-F. Lai and S.-L. Cheng (2002)
J. Biol. Chem. 277, 15514-15522
   Abstract »    Full Text »    PDF »
Cross-talk between ERK and p38 MAPK Mediates Selective Suppression of Pro-inflammatory Cytokines by Transforming Growth Factor-{beta}.
Y. Q. Xiao, K. Malcolm, G. S. Worthen, S. Gardai, W. P. Schiemann, V. A. Fadok, D. L. Bratton, and P. M. Henson (2002)
J. Biol. Chem. 277, 14884-14893
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta}1 Induces Apoptosis through Cleavage of BAD in a Smad3-Dependent Mechanism in FaO Hepatoma Cells.
B.-C. Kim, M. Mamura, K. S. Choi, B. Calabretta, and S.-J. Kim (2002)
Mol. Cell. Biol. 22, 1369-1378
   Abstract »    Full Text »    PDF »
Smad3 in the Mammary Epithelium Has a Nonredundant Role in the Induction of Apoptosis, but not in the Regulation of Proliferation or Differentiation by Transforming Growth Factor-{beta}.
Y.-a. Yang, B. Tang, G. Robinson, L. Hennighausen, S. G. Brodie, C.-X. Deng, and L. M. Wakefield (2002)
Cell Growth Differ. 13, 123-130
   Abstract »    Full Text »    PDF »
The Androgen Receptor Represses Transforming Growth Factor-{beta} Signaling through Interaction with Smad3.
J. E. Chipuk, S. C. Cornelius, N. J. Pultz, J. S. Jorgensen, M. J. Bonham, S.-J. Kim, and D. Danielpour (2002)
J. Biol. Chem. 277, 1240-1248
   Abstract »    Full Text »    PDF »
Peroxisome Proliferator-activated Receptor {gamma} Inhibits Transforming Growth Factor {beta}-induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3.
M. Fu, J. Zhang, X. Zhu, D. E. Myles, T. M. Willson, X. Liu, and Y. E. Chen (2001)
J. Biol. Chem. 276, 45888-45894
   Abstract »    Full Text »    PDF »
Structural and Functional Characterization of the Transforming Growth Factor-beta -induced Smad3/c-Jun Transcriptional Cooperativity.
J. Qing, Y. Zhang, and R. Derynck (2000)
J. Biol. Chem. 275, 38802-38812
   Abstract »    Full Text »    PDF »
The Androgen Receptor Represses Transforming Growth Factor-{beta} Signaling through Interaction with Smad3.
J. E. Chipuk, S. C. Cornelius, N. J. Pultz, J. S. Jorgensen, M. J. Bonham, S.-J. Kim, and D. Danielpour (2002)
J. Biol. Chem. 277, 1240-1248
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882