Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 276 (19): 15609-15615

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Differential Activation of the Rac Pathway by Ha-Ras and K-Ras*

Amy B. WalshDagger § and Dafna Bar-SagiDagger

From the Dagger  Department of Molecular Genetics and Microbiology and the § Graduate Program in Physiology and Biophysics, State University of New York, Stony Brook, New York 11794

Ras proteins are key regulators of cell growth and differentiation. Mammalian cells express three closely related Ras proteins: Ha-Ras, K-Ras, and N-Ras. We have compared the abilities of the Ha-Ras and K-Ras isoforms to activate the Rac effector pathway, using three Rac-dependent readouts: induction of membrane ruffling and pinocytosis, stimulation of cell motility, and Pak binding. The total surface area of membrane ruffles induced by K-RasV12 was 2-fold greater than that induced by Ha-RasV12. Likewise, the number of K-RasV12-induced pinocytic vesicles per cell was ~2-fold greater than that induced by Ha-RasV12. In a wound healing assay, K-RasV12-injected cells migrated twice as fast as Ha-RasV12-injected cells. Moreover, the Pak binding activity of Rac, which is indicative of the amount of GTP-bound Rac, was higher in K-RasV12-expressing cells than Ha-RasV12-expressing cells. These results suggest that K-Ras activates Rac more efficiently than Ha-Ras. The preferential activation of Rac by K-Ras is dependent on the mode of membrane anchoring and impacts on the ability of K-Ras to regulate cell survival.


* This work was supported by National Institutes of Health Grant CA55360.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom correspondence should be addressed: Dept. of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222. Tel.: 631-632-9737; Fax: 631-632-8891; E-mail: barsagi@pharm.sunysb.edu.


Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Exploiting the bad eating habits of Ras-driven cancers.
E. White (2013)
Genes & Dev. 27, 2065-2071
   Abstract »    Full Text »    PDF »
A Comprehensive Survey of Ras Mutations in Cancer.
I. A. Prior, P. D. Lewis, and C. Mattos (2012)
Cancer Res. 72, 2457-2467
   Abstract »    Full Text »    PDF »
Functional Specificity of Ras Isoforms: So Similar but So Different.
E. Castellano and E. Santos (2011)
Genes & Cancer 2, 216-231
   Abstract »    Full Text »    PDF »
Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events.
I. Arozarena, F. Calvo, and P. Crespo (2011)
Genes & Cancer 2, 182-194
   Abstract »    Full Text »    PDF »
Induction of Nonapoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6.
H. Bhanot, A. M. Young, J. H. Overmeyer, and W. A. Maltese (2010)
Mol. Cancer Res. 8, 1358-1374
   Abstract »    Full Text »    PDF »
cPLA2 Regulates the Expression of Type I Interferons and Intracellular Immunity to Chlamydia trachomatis.
M. J. Vignola, D. F. Kashatus, G. A. Taylor, C. M. Counter, and R. H. Valdivia (2010)
J. Biol. Chem. 285, 21625-21635
   Abstract »    Full Text »    PDF »
Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats.
L. Goldberg, A. Ocherashvilli, D. Daniels, D. Last, Z. R. Cohen, G. Tamar, Y. Kloog, and Y. Mardor (2008)
Mol. Cancer Ther. 7, 3609-3616
   Abstract »    Full Text »    PDF »
Differential Interference of Chlorpromazine with the Membrane Interactions of Oncogenic K-Ras and Its Effects on Cell Growth.
S. Eisenberg, K. Giehl, Y. I. Henis, and M. Ehrlich (2008)
J. Biol. Chem. 283, 27279-27288
   Abstract »    Full Text »    PDF »
Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain.
A. J. Laude and I. A. Prior (2008)
J. Cell Sci. 121, 421-427
   Abstract »    Full Text »    PDF »
Requirement for Rac1 in a K-ras Induced Lung Cancer in the Mouse.
J. L. Kissil, M. J. Walmsley, L. Hanlon, K. M. Haigis, C. F. Bender Kim, A. Sweet-Cordero, M. S. Eckman, D. A. Tuveson, A. J. Capobianco, V. L.J. Tybulewicz, et al. (2007)
Cancer Res. 67, 8089-8094
   Abstract »    Full Text »    PDF »
Oncogenic NRAS, KRAS, and HRAS Exhibit Different Leukemogenic Potentials in Mice.
C. Parikh, R. Subrahmanyam, and R. Ren (2007)
Cancer Res. 67, 7139-7146
   Abstract »    Full Text »    PDF »
K-ras Is Critical for Modulating Multiple c-kit-Mediated Cellular Functions in Wild-Type and Nf1+/- Mast Cells.
W. F. Khalaf, F.-C. Yang, S. Chen, H. White, W. Bessler, D. A. Ingram, and D. W. Clapp (2007)
J. Immunol. 178, 2527-2534
   Abstract »    Full Text »    PDF »
Merlin/Neurofibromatosis Type 2 Suppresses Growth by Inhibiting the Activation of Ras and Rac.
H. Morrison, T. Sperka, J. Manent, M. Giovannini, H. Ponta, and P. Herrlich (2007)
Cancer Res. 67, 520-527
   Abstract »    Full Text »    PDF »
A Ras Inhibitor Tilts the Balance between Rac and Rho and Blocks Phosphatidylinositol 3-Kinase-Dependent Glioblastoma Cell Migration.
L. Goldberg and Y. Kloog (2006)
Cancer Res. 66, 11709-11717
   Abstract »    Full Text »    PDF »
Palmitoylation of Ligands, Receptors, and Intracellular Signaling Molecules.
M. D. Resh (2006)
Sci. STKE 2006, re14
   Abstract »    Full Text »    PDF »
Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells.
A. M. Munchhof, F. Li, H. A. White, L. E. Mead, T. R. Krier, A. Fenoglio, X. Li, J. Yuan, F.-C. Yang, and D. A. Ingram (2006)
Hum. Mol. Genet. 15, 1858-1869
   Abstract »    Full Text »    PDF »
Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells.
M. Beloueche-Babari, L. E. Jackson, N. M.S. Al-Saffar, S. A. Eccles, F. I. Raynaud, P. Workman, M. O. Leach, and S. M. Ronen (2006)
Mol. Cancer Ther. 5, 187-196
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor {alpha} Stimulation of Rac1 Activity: ROLE OF ISOPRENYLCYSTEINE CARBOXYLMETHYLTRANSFERASE.
C. Papaharalambus, W. Sajjad, A. Syed, C. Zhang, M. O. Bergo, R. W. Alexander, and M. Ahmad (2005)
J. Biol. Chem. 280, 18790-18796
   Abstract »    Full Text »    PDF »
Protein O-GlcNAc Modulates Motility-associated Signaling Intermediates in Neutrophils.
Z. T. Kneass and R. B. Marchase (2005)
J. Biol. Chem. 280, 14579-14585
   Abstract »    Full Text »    PDF »
H-Ras-specific Activation of Rac-MKK3/6-p38 Pathway: ITS CRITICAL ROLE IN INVASION AND MIGRATION OF BREAST EPITHELIAL CELLS.
I. Shin, S. Kim, H. Song, H.-R. C. Kim, and A. Moon (2005)
J. Biol. Chem. 280, 14675-14683
   Abstract »    Full Text »    PDF »
Proteomic Analysis Reveals Hyperactivation of the Mammalian Target of Rapamycin Pathway in Neurofibromatosis 1-Associated Human and Mouse Brain Tumors.
B. Dasgupta, Y. Yi, D. Y. Chen, J. D. Weber, and D. H. Gutmann (2005)
Cancer Res. 65, 2755-2760
   Abstract »    Full Text »    PDF »
Macropinocytosis Is the Endocytic Pathway That Mediates Macrophage Foam Cell Formation with Native Low Density Lipoprotein.
H. S. Kruth, N. L. Jones, W. Huang, B. Zhao, I. Ishii, J. Chang, C. A. Combs, D. Malide, and W.-Y. Zhang (2005)
J. Biol. Chem. 280, 2352-2360
   Abstract »    Full Text »    PDF »
Mouse Models of Human Non-Small-Cell Lung Cancer: Raising the Bar.
C.F.B. KIM, E.L. JACKSON, D.G. KIRSCH, J. GRIMM, A.T. SHAW, K. LANE, J. KISSIL, K.P. OLIVE, A. SWEET-CORDERO, R. WEISSLEDER, et al. (2005)
Cold Spring Harb Symp Quant Biol 70, 241-250
   Abstract »    PDF »
Glioma Formation in Neurofibromatosis 1 Reflects Preferential Activation of K-RAS in Astrocytes.
B. Dasgupta, W. Li, A. Perry, and D. H. Gutmann (2005)
Cancer Res. 65, 236-245
   Abstract »    Full Text »    PDF »
R-Ras Controls Membrane Protrusion and Cell Migration through the Spatial Regulation of Rac and Rho.
M. A. Wozniak, L. Kwong, D. Chodniewicz, R. L. Klemke, and P. J. Keely (2005)
Mol. Biol. Cell 16, 84-96
   Abstract »    Full Text »    PDF »
The P34G Mutation Reduces the Transforming Activity of K-Ras and N-Ras in NIH 3T3 Cells but Not of H-Ras.
J. L. Oliva, N. Zarich, N. Martinez, R. Jorge, A. Castrillo, M. Azanedo, S. Garcia-Vargas, S. Gutierrez-Eisman, A. Juarranz, L. Bosca, et al. (2004)
J. Biol. Chem. 279, 33480-33491
   Abstract »    Full Text »    PDF »
Pancreatic cancer cells express 25-hydroxyvitamin D-1{alpha}-hydroxylase and their proliferation is inhibited by the prohormone 25-hydroxyvitamin D3.
G. G. Schwartz, D. Eads, A. Rao, S. D. Cramer, M. C. Willingham, T. C. Chen, D. P. Jamieson, L. Wang, K. L. Burnstein, M. F. Holick, et al. (2004)
Carcinogenesis 25, 1015-1026
   Abstract »    Full Text »    PDF »
Protein kinase C{iota} is required for Ras transformation and colon carcinogenesis in vivo.
N. R. Murray, L. Jamieson, W. Yu, J. Zhang, Y. Gokmen-Polar, D. Sier, P. Anastasiadis, Z. Gatalica, E. A. Thompson, and A. P. Fields (2004)
J. Cell Biol. 164, 797-802
   Abstract »    Full Text »    PDF »
While K-ras Is Essential for Mouse Development, Expression of the K-ras 4A Splice Variant Is Dispensable.
S. J. Plowman, D. J. Williamson, M. J. O'Sullivan, J. Doig, A.-M. Ritchie, D. J. Harrison, D. W. Melton, M. J. Arends, M. L. Hooper, and C. E. Patek (2003)
Mol. Cell. Biol. 23, 9245-9250
   Abstract »    Full Text »    PDF »
Palmitoylation and Plasma Membrane Localization of Ras2p by a Nonclassical Trafficking Pathway in Saccharomyces cerevisiae.
X. Dong, D. A. Mitchell, S. Lobo, L. Zhao, D. J. Bartels, and R. J. Deschenes (2003)
Mol. Cell. Biol. 23, 6574-6584
   Abstract »    Full Text »    PDF »
Farnesyltransferase Inhibitors: An Overview of the Results of Preclinical and Clinical Investigations.
T. B. Brunner, S. M. Hahn, A. K. Gupta, R. J. Muschel, W. G. McKenna, and E. J. Bernhard (2003)
Cancer Res. 63, 5656-5668
   Abstract »    Full Text »    PDF »
Distinct Rates of Palmitate Turnover on Membrane-bound Cellular and Oncogenic H-Ras.
T. L. Baker, H. Zheng, J. Walker, J. L. Coloff, and J. E. Buss (2003)
J. Biol. Chem. 278, 19292-19300
   Abstract »    Full Text »    PDF »
The cyclopentenone 15-deoxy-{Delta}12,14-prostaglandin J2 binds to and activates H-Ras.
J. L. Oliva, D. Perez-Sala, A. Castrillo, N. Martinez, F. J. Canada, L. Bosca, and J. M. Rojas (2003)
PNAS 100, 4772-4777
   Abstract »    Full Text »    PDF »
Mice Deficient for N-ras: Impaired Antiviral Immune Response and T-Cell Function.
I. Perez de Castro, R. Diaz, M. Malumbres, M.-I. Hernandez, J. Jagirdar, M. Jimenez, D. Ahn, and A. Pellicer (2003)
Cancer Res. 63, 1615-1622
   Abstract »    Full Text »    PDF »
Differences on the Inhibitory Specificities of H-Ras, K-Ras, and N-Ras (N17) Dominant Negative Mutants Are Related to Their Membrane Microlocalization.
D. Matallanas, I. Arozarena, M. T. Berciano, D. S. Aaronson, A. Pellicer, M. Lafarga, and P. Crespo (2003)
J. Biol. Chem. 278, 4572-4581
   Abstract »    Full Text »    PDF »
The Exocytotic Trafficking of TC10 Occurs through both Classical and Nonclassical Secretory Transport Pathways in 3T3L1 Adipocytes.
R. T. Watson, M. Furukawa, S.-H. Chiang, D. Boeglin, M. Kanzaki, A. R. Saltiel, and J. E. Pessin (2003)
Mol. Cell. Biol. 23, 961-974
   Abstract »    Full Text »    PDF »
Small GTPase Rah/Rab34 Is Associated with Membrane Ruffles and Macropinosomes and Promotes Macropinosome Formation.
P. Sun, H. Yamamoto, S. Suetsugu, H. Miki, T. Takenawa, and T. Endo (2003)
J. Biol. Chem. 278, 4063-4071
   Abstract »    Full Text »    PDF »
The Requirement of Specific Membrane Domains for Raf-1 Phosphorylation and Activation.
K. D. Carey, R. T. Watson, J. E. Pessin, and P. J. S. Stork (2003)
J. Biol. Chem. 278, 3185-3196
   Abstract »    Full Text »    PDF »
Oncogenic Ras Leads to Rho Activation by Activating the Mitogen-activated Protein Kinase Pathway and Decreasing Rho-GTPase-activating Protein Activity.
J. C. Chen, S. Zhuang, T. H. Nguyen, G. R. Boss, and R. B. Pilz (2003)
J. Biol. Chem. 278, 2807-2818
   Abstract »    Full Text »    PDF »
Elevated Phospholipase D Activity in H-Ras- but Not K-Ras-Transformed Cells by the Synergistic Action of RalA and ARF6.
L. Xu, P. Frankel, D. Jackson, T. Rotunda, R. L. Boshans, C. D'Souza-Schorey, and D. A. Foster (2003)
Mol. Cell. Biol. 23, 645-654
   Abstract »    Full Text »    PDF »
Insider Information: How Palmitoylation of Ras Makes It a Signaling Double Agent.
L. G. Berthiaume (2002)
Sci. STKE 2002, pe41
   Abstract »    Full Text »    PDF »
H-Ras Signaling and K-Ras Signaling Are Differentially Dependent on Endocytosis.
S. Roy, B. Wyse, and J. F. Hancock (2002)
Mol. Cell. Biol. 22, 5128-5140
   Abstract »    Full Text »    PDF »
Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells.
H. Niv, O. Gutman, Y. Kloog, and Y. I. Henis (2002)
J. Cell Biol. 157, 865-872
   Abstract »    Full Text »    PDF »
The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins.
J. E. Egan, A. B. Hall, B. A. Yatsula, and D. Bar-Sagi (2002)
PNAS 99, 6041-6046
   Abstract »    Full Text »    PDF »
Interaction between Active Pak1 and Raf-1 Is Necessary for Phosphorylation and Activation of Raf-1.
M. Zang, C. Hayne, and Z. Luo (2002)
J. Biol. Chem. 277, 4395-4405
   Abstract »    Full Text »    PDF »
Ras Isoform-Specific Signaling: Location, Location, Location.
A. Wolfman (2001)
Sci. STKE 2001, pe2
   Abstract »    Full Text »    PDF »
The Linker Domain of the Ha-Ras Hypervariable Region Regulates Interactions with Exchange Factors, Raf-1 and Phosphoinositide 3-Kinase.
M. Jaumot, J. Yan, J. Clyde-Smith, J. Sluimer, and J. F. Hancock (2002)
J. Biol. Chem. 277, 272-278
   Abstract »    Full Text »    PDF »
Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation.
R. T. Watson, S. Shigematsu, S.-H. Chiang, S. Mora, M. Kanzaki, I. G. Macara, A. R. Saltiel, and J. E. Pessin (2001)
J. Cell Biol. 154, 829-840
   Abstract »    Full Text »    PDF »
Protection of Human Endothelial Cells From Oxidative Stress: Role of Ras-ERK1/2 Signaling.
G. Cuda, R. Paterno, R. Ceravolo, M. Candigliota, N. Perrotti, F. Perticone, M. C. Faniello, F. Schepis, A. Ruocco, E. Mele, et al. (2002)
Circulation 105, 968-974
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882