Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 276 (30): 28197-28203

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Role of Sodium Channel Deglycosylation in the Genesis of Cardiac Arrhythmias in Heart Failure*

Carmen A. Ufret-VincentyDagger §, Deborah J. BaroDagger ||, W. Jonathan Lederer**, Howard A. RockmanDagger Dagger , Luis E. QuiñonesDagger , and L. Fernando SantanaDagger §§§

From the Dagger  Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico 00901, the  Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936, the ** Medical Biotechnology Center and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and the Dagger Dagger  Department of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710

We investigated the cellular and molecular mechanisms underlying arrhythmias in heart failure. A genetically engineered mouse lacking the expression of the muscle LIM protein (MLP-/-) was used in this study as a model of heart failure. We used electrocardiography and patch clamp techniques to examine the electrophysiological properties of MLP-/- hearts. We found that MLP-/- myocytes had smaller Na+ currents with altered voltage dependencies of activation and inactivation and slower rates of inactivation than control myocytes. These changes in Na+ currents contributed to longer action potentials and to a higher probability of early afterdepolarizations in MLP-/- than in control myocytes. Western blot analysis suggested that the smaller Na+ current in MLP-/- myocytes resulted from a reduction in Na+ channel protein. Interestingly, the blots also revealed that the alpha -subunit of the Na+ channel from the MLP-/- heart had a lower average molecular weight than in the control heart. Treating control myocytes with the sialidase neuraminidase mimicked the changes in voltage dependence and rate of inactivation of Na+ currents observed in MLP-/- myocytes. Neuraminidase had no effect on MLP-/- cells thus suggesting that Na+ channels in these cells were sialic acid-deficient. We conclude that deficient glycosylation of Na+ channel contributes to Na+ current-dependent arrhythmogenesis in heart failure.

* This work was supported by NINDS Grants 1 U54 NS39405-02 (to L. F. S.), RO1 NS38770 (to D. J. B.), RO1 HL67927 (to L. F. S.), NSF-EPSCoR (to L. F. S. and D. J. B.), and RCMI-UPR G12RR-03051 (to L. F. S. and D. J. B.) from the National Institutes of Health.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Current address: Dept. of Physiology and Biophysics, University of Washington, Box 357290, Seattle, WA 98195-7290.

|| Current address: Dept. of Biology, Georgia State University, 24 Peach Tree Ave., Atlanta, GA 30303.

§§ To whom correspondence should be addressed. Tel.: 787-724-2059; Fax: 787-721-5474; E-mail:

Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

The role of protein N-glycosylation in neural transmission.
H. Scott and V. M. Panin (2014)
Glycobiology 24, 407-417
   Abstract »    Full Text »    PDF »
Cardiac Potassium Channel Subtypes: New Roles in Repolarization and Arrhythmia.
N. Schmitt, M. Grunnet, and S.-P. Olesen (2014)
Physiol Rev 94, 609-653
   Abstract »    Full Text »    PDF »
Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias.
A. W. Herren, D. M. Bers, and E. Grandi (2013)
Am J Physiol Heart Circ Physiol 305, H431-H445
   Abstract »    Full Text »    PDF »
The Role of Drosophila Cytidine Monophosphate-Sialic Acid Synthetase in the Nervous System.
R. Islam, M. Nakamura, H. Scott, E. Repnikova, M. Carnahan, D. Pandey, C. Caster, S. Khan, T. Zimmermann, M. J. Zoran, et al. (2013)
J. Neurosci. 33, 12306-12315
   Abstract »    Full Text »    PDF »
Channel sialic acids limit hERG channel activity during the ventricular action potential.
S. A. Norring, A. R. Ednie, T. A. Schwetz, D. Du, H. Yang, and E. S. Bennett (2013)
FASEB J 27, 622-631
   Abstract »    Full Text »    PDF »
N-Glycosylation of TRPM8 Ion Channels Modulates Temperature Sensitivity of Cold Thermoreceptor Neurons.
M. Pertusa, R. Madrid, C. Morenilla-Palao, C. Belmonte, and F. Viana (2012)
J. Biol. Chem. 287, 18218-18229
   Abstract »    Full Text »    PDF »
Biology of cardiac sodium channel Nav1.5 expression.
M. B. Rook, M. M. Evers, M. A. Vos, and M. F. A. Bierhuizen (2012)
Cardiovasc Res 93, 12-23
   Abstract »    Full Text »    PDF »
Quantitative N-linked Glycoproteomics of Myocardial Ischemia and Reperfusion Injury Reveals Early Remodeling in the Extracellular Environment.
B. L. Parker, G. Palmisano, A. V. G. Edwards, M. Y. White, K. Engholm-Keller, A. Lee, N. E. Scott, D. Kolarich, B. D. Hambly, N. H. Packer, et al. (2011)
Mol. Cell. Proteomics 10, M110.006833
   Abstract »    Full Text »    PDF »
Sialic Acids Attached to O-Glycans Modulate Voltage-gated Potassium Channel Gating.
T. A. Schwetz, S. A. Norring, A. R. Ednie, and E. S. Bennett (2011)
J. Biol. Chem. 286, 4123-4132
   Abstract »    Full Text »    PDF »
Sialyltransferase Regulates Nervous System Function in Drosophila.
E. Repnikova, K. Koles, M. Nakamura, J. Pitts, H. Li, A. Ambavane, M. J. Zoran, and V. M. Panin (2010)
J. Neurosci. 30, 6466-6476
   Abstract »    Full Text »    PDF »
Sodium Channel Carboxyl-terminal Residue Regulates Fast Inactivation.
H. M. Nguyen and A. L. Goldin (2010)
J. Biol. Chem. 285, 9077-9089
   Abstract »    Full Text »    PDF »
Regulated and aberrant glycosylation modulate cardiac electrical signaling.
M. L. Montpetit, P. J. Stocker, T. A. Schwetz, J. M. Harper, S. A. Norring, L. Schaffer, S. J. North, J. Jang-Lee, T. Gilmartin, S. R. Head, et al. (2009)
PNAS 106, 16517-16522
   Abstract »    Full Text »    PDF »
Human Heart Failure Is Associated With Abnormal C-Terminal Splicing Variants in the Cardiac Sodium Channel.
L. L. Shang, A. E. Pfahnl, S. Sanyal, Z. Jiao, J. Allen, K. Banach, J. Fahrenbach, D. Weiss, W. R. Taylor, A. M. Zafari, et al. (2007)
Circ. Res. 101, 1146-1154
   Abstract »    Full Text »    PDF »
Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation.
S. Nattel, A. Maguy, S. Le Bouter, and Y.-H. Yeh (2007)
Physiol Rev 87, 425-456
   Abstract »    Full Text »    PDF »
Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking.
H. Xu, Y. Fu, W. Tian, and D. M. Cohen (2006)
Am J Physiol Renal Physiol 290, F1103-F1109
   Abstract »    Full Text »    PDF »
Mechanisms underlying variations in excitation-contraction coupling across the mouse left ventricular free wall.
K. W. Dilly, C. F. Rossow, V. S. Votaw, J. S. Meabon, J. L. Cabarrus, and L. F. Santana (2006)
J. Physiol. 572, 227-241
   Abstract »    Full Text »    PDF »
Differential Sialylation Modulates Voltage-gated Na+ Channel Gating throughout the Developing Myocardium.
P. J. Stocker and E. S. Bennett (2006)
J. Gen. Physiol. 127, 253-265
   Abstract »    Full Text »    PDF »
Computer model of action potential of mouse ventricular myocytes.
V. E. Bondarenko, G. P. Szigeti, G. C. L. Bett, S.-J. Kim, and R. L. Rasmusson (2004)
Am J Physiol Heart Circ Physiol 287, H1378-H1403
   Abstract »    Full Text »    PDF »
Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
I. Watanabe, H.-G. Wang, J. J Sutachan, J. Zhu, E. Recio-Pinto, and W. B Thornhill (2003)
J. Physiol. 550, 51-66
   Abstract »    Full Text »    PDF »
Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes.
L F Santana, E G Chase, V S Votaw, M. T Nelson, and R Greven (2002)
J. Physiol. 544, 57-69
   Abstract »    Full Text »    PDF »
Stem Cell-Derived Cardiomyocytes Demonstrate Arrhythmic Potential.
Y. M. Zhang, C. Hartzell, M. Narlow, and S. C. Dudley Jr (2002)
Circulation 106, 1294-1299
   Abstract »    Full Text »    PDF »
Do Defects in Ion Channel Glycosylation Set the Stage for Lethal Cardiac Arrhythmias?.
H. A. Fozzard and J. W. Kyle (2002)
Sci. STKE 2002, pe19
   Abstract »    Full Text »    PDF »
Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated.
L. Tyrrell, M. Renganathan, S. D. Dib-Hajj, and S. G. Waxman (2001)
J. Neurosci. 21, 9629-9637
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882