Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 276 (37): 34371-34378

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Functional Interaction between SEL-10, an F-box Protein, and the Nuclear Form of Activated Notch1 Receptor*

Neetu Gupta-RossiDagger , Odile Le Bail, Hedva Gonen§, Christel Brou, Frédérique Logeat, Emmanuelle Six, Aaron Ciechanover§, and Alain Israël

From the Unité de Biologie Moléculaire de l'Expression Génique, FRE 2364, CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France, and the § Department of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Haifa 31096, Israel

The Notch signaling pathway is essential in many cell fate decisions in invertebrates as well as in vertebrates. After ligand binding, a two-step proteolytic cleavage releases the intracellular part of the receptor which translocates to the nucleus and acts as a transcriptional activator. Although Notch-induced transcription of genes has been reported extensively, its endogenous nuclear form has been seldom visualized. We report that the nuclear intracellular domain of Notch1 is stabilized by proteasome inhibitors and is a substrate for polyubiquitination in vitro. SEL-10, an F-box protein of the Cdc4 family, was isolated in a genetic screen for Lin12/Notch-negative regulators in Caenorhabditis elegans. We isolated human and murine counterparts of SEL-10 and investigated the role of a dominant-negative form of this protein, deleted of the F-box, on Notch1 stability and activity. This molecule could stabilize intracellular Notch1 and enhance its transcriptional activity but had no effect on inactive membrane-anchored forms of the receptor. We then demonstrated that SEL-10 specifically interacts with nuclear forms of Notch1 and that this interaction requires a phosphorylation event. Taken together, these data suggest that SEL-10 is involved in shutting off Notch signaling by ubiquitin-proteasome-mediated degradation of the active transcriptional factor after a nuclear phosphorylation event.


* This work was supported in part by grants from the Association pour la Recherche contre le Cancer (to A. I.) and by TMR Grant CT 960026 from EC (to A. I. and A. C.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Dagger Recipient of a postdoctoral fellowship award from EC (Biomed program).

To whom correspondence should be addressed. E-mail: aisrael@pasteur.fr.


Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Notch signaling: switching an oncogene to a tumor suppressor.
C. Lobry, P. Oh, M. R. Mansour, A. T. Look, and I. Aifantis (2014)
Blood 123, 2451-2459
   Abstract »    Full Text »    PDF »
Cell-cycle regulation of NOTCH signaling during C. elegans vulval development.
S. Nusser-Stein, A. Beyer, I. Rimann, M. Adamczyk, N. Piterman, A. Hajnal, and J. Fisher (2014)
Mol Syst Biol 8, 618
   Abstract »    Full Text »    PDF »
Regulation of stem cell function by protein ubiquitylation.
A. Strikoudis, M. Guillamot, and I. Aifantis (2014)
EMBO Rep. 15, 365-382
   Abstract »    Full Text »    PDF »
Notch-Nrf2 Axis: Regulation of Nrf2 Gene Expression and Cytoprotection by Notch Signaling.
N. Wakabayashi, J. J. Skoko, D. V. Chartoumpekis, S. Kimura, S. L. Slocum, K. Noda, D. L. Palliyaguru, M. Fujimuro, P. A. Boley, Y. Tanaka, et al. (2014)
Mol. Cell. Biol. 34, 653-663
   Abstract »    Full Text »    PDF »
The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors.
S. Ortica, N. Tarantino, N. Aulner, A. Israel, and N. Gupta-Rossi (2014)
FASEB J 28, 603-614
   Abstract »    Full Text »    PDF »
Noncanonical NOTCH Signaling Limits Self-Renewal of Human Epithelial and Induced Pluripotent Stem Cells through ROCK Activation.
T. Yugawa, K. Nishino, S.-i. Ohno, T. Nakahara, M. Fujita, N. Goshima, A. Umezawa, and T. Kiyono (2013)
Mol. Cell. Biol. 33, 4434-4447
   Abstract »    Full Text »    PDF »
F-box and WD Repeat Domain-containing-7 (Fbxw7) Protein Targets Endoplasmic Reticulum-anchored Osteogenic and Chondrogenic Transcriptional Factors for Degradation.
K. Yumimoto, M. Matsumoto, I. Onoyama, K. Imaizumi, and K. I. Nakayama (2013)
J. Biol. Chem. 288, 28488-28502
   Abstract »    Full Text »    PDF »
Notch signaling at a glance.
K. Hori, A. Sen, and S. Artavanis-Tsakonas (2013)
J. Cell Sci. 126, 2135-2140
   Abstract »    Full Text »    PDF »
Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme.
A. Terriente-Felix, J. Li, S. Collins, A. Mulligan, I. Reekie, F. Bernard, A. Krejci, and S. Bray (2013)
Development 140, 926-937
   Abstract »    Full Text »    PDF »
SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron.
C. de la Cova and I. Greenwald (2012)
Genes & Dev. 26, 2524-2535
   Abstract »    Full Text »    PDF »
The Matricellular Protein CCN1/Cyr61 Is a Critical Regulator of Sonic Hedgehog in Pancreatic Carcinogenesis.
I. Haque, A. De, M. Majumder, S. Mehta, D. McGregor, S. K. Banerjee, P. Van Veldhuizen, and S. Banerjee (2012)
J. Biol. Chem. 287, 38569-38579
   Abstract »    Full Text »    PDF »
Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.
M. J. Kiel, T. Velusamy, B. L. Betz, L. Zhao, H. G. Weigelin, M. Y. Chiang, D. R. Huebner-Chan, N. G. Bailey, D. T. Yang, G. Bhagat, et al. (2012)
J. Exp. Med. 209, 1553-1565
   Abstract »    Full Text »    PDF »
Presenilin-2 regulates the degradation of RBP-Jk protein through p38 mitogen-activated protein kinase.
S.-M. Kim, M.-Y. Kim, E.-J. Ann, J.-S. Mo, J.-H. Yoon, and H.-S. Park (2012)
J. Cell Sci. 125, 1296-1308
   Abstract »    Full Text »    PDF »
Notch Signaling Is Antagonized by SAO-1, a Novel GYF-Domain Protein That Interacts with the E3 Ubiquitin Ligase SEL-10 in Caenorhabditis elegans.
V. A. Hale, E. L. Guiney, L. Y. Goldberg, J. H. Haduong, C. S. Kwartler, K. W. Scangos, and C. Goutte (2012)
Genetics 190, 1043-1057
   Abstract »    Full Text »    PDF »
Dual Regulation of Notch1 Signaling Pathway by Adaptor Protein Fe65.
M.-Y. Kim, J.-S. Mo, E.-J. Ann, J.-H. Yoon, and H.-S. Park (2012)
J. Biol. Chem. 287, 4690-4701
   Abstract »    Full Text »    PDF »
Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas.
K.-Y. Jen, I. Y. Song, K. L. Banta, D. Wu, J.-H. Mao, and A. Balmain (2012)
Blood 119, 805-809
   Abstract »    Full Text »    PDF »
Emerging roles of the FBW7 tumour suppressor in stem cell differentiation.
Z. Wang, H. Inuzuka, H. Fukushima, L. Wan, D. Gao, S. Shaik, F. H. Sarkar, and W. Wei (2012)
EMBO Rep. 13, 36-43
   Abstract »    Full Text »    PDF »
Notch signaling: simplicity in design, versatility in function.
E. R. Andersson, R. Sandberg, and U. Lendahl (2011)
Development 138, 3593-3612
   Abstract »    Full Text »    PDF »
Hierarchical Phosphorylation within the Ankyrin Repeat Domain Defines a Phosphoregulatory Loop That Regulates Notch Transcriptional Activity.
P. Ranganathan, R. Vasquez-Del Carpio, F. M. Kaplan, H. Wang, A. Gupta, J. D. VanWye, and A. J. Capobianco (2011)
J. Biol. Chem. 286, 28844-28857
   Abstract »    Full Text »    PDF »
Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.
M.-Y. Kim, J.-S. Mo, E.-J. Ann, J.-H. Yoon, J. Jung, Y.-H. Choi, S.-M. Kim, H.-Y. Kim, J.-S. Ahn, H. Kim, et al. (2011)
J. Cell Sci. 124, 1831-1843
   Abstract »    Full Text »    PDF »
The Adaptor-associated Kinase 1, AAK1, Is a Positive Regulator of the Notch Pathway.
N. Gupta-Rossi, S. Ortica, V. Meas-Yedid, S. Heuss, J. Moretti, J.-C. Olivo-Marin, and A. Israel (2011)
J. Biol. Chem. 286, 18720-18730
   Abstract »    Full Text »    PDF »
Nucleolar Targeting of the Fbw7 Ubiquitin Ligase by a Pseudosubstrate and Glycogen Synthase Kinase 3.
M. Welcker, E. A. Larimore, L. Frappier, and B. E. Clurman (2011)
Mol. Cell. Biol. 31, 1214-1224
   Abstract »    Full Text »    PDF »
Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase.
J.-S. Mo, E.-J. Ann, J.-H. Yoon, J. Jung, Y.-H. Choi, H.-Y. Kim, J.-S. Ahn, S.-M. Kim, M.-Y. Kim, J.-A. Hong, et al. (2011)
J. Cell Sci. 124, 100-112
   Abstract »    Full Text »    PDF »
Delivering the Lateral Inhibition Punchline: It's All About the Timing.
J. D. Axelrod (2010)
Science Signaling 3, pe38
   Abstract »    Full Text »    PDF »
Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia.
J. Pancewicz, J. M. Taylor, A. Datta, H. H. Baydoun, T. A. Waldmann, O. Hermine, and C. Nicot (2010)
PNAS 107, 16619-16624
   Abstract »    Full Text »    PDF »
Ectodomain Shedding of Interleukin-2 Receptor {beta} and Generation of an Intracellular Functional Fragment.
P. M. de Oca B., V. Malarde, R. Proust, A. Dautry-Varsat, and F. Gesbert (2010)
J. Biol. Chem. 285, 22050-22058
   Abstract »    Full Text »    PDF »
Error Minimization in Lateral Inhibition Circuits.
O. Barad, D. Rosin, E. Hornstein, and N. Barkai (2010)
Science Signaling 3, ra51
   Abstract »    Full Text »    PDF »
Cyclin E Is Stabilized in Response to Replication Fork Barriers Leading to Prolonged S Phase Arrest.
X. Lu, J. Liu, and R. J. Legerski (2009)
J. Biol. Chem. 284, 35325-35337
   Abstract »    Full Text »    PDF »
Artemis Regulates Cell Cycle Recovery from the S Phase Checkpoint by Promoting Degradation of Cyclin E.
H. Wang, X. Zhang, L. Geng, L. Teng, and R. J. Legerski (2009)
J. Biol. Chem. 284, 18236-18243
   Abstract »    Full Text »    PDF »
Notch Signaling and Cancer.
T. Dai (2009)
Am. Assoc. Cancer Res. Educ. Book 2009, 71-79
   Full Text »    PDF »
Opposite Effects of Notch-1 and Notch-2 on Mesothelioma Cell Survival under Hypoxia Are Exerted through the Akt Pathway.
I. Graziani, S. Eliasz, M. A. De Marco, Y. Chen, H. I. Pass, R. M. De May, P. R. Strack, L. Miele, and M. Bocchetta (2008)
Cancer Res. 68, 9678-9685
   Abstract »    Full Text »    PDF »
Metalloproteinase- and {gamma}-Secretase-mediated Cleavage of Protein-tyrosine Phosphatase Receptor Type Z.
J. P. H. Chow, A. Fujikawa, H. Shimizu, R. Suzuki, and M. Noda (2008)
J. Biol. Chem. 283, 30879-30889
   Abstract »    Full Text »    PDF »
Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase.
J. E. Grim, M. P. Gustafson, R. K. Hirata, A. C. Hagar, J. Swanger, M. Welcker, H. C. Hwang, J. Ericsson, D. W. Russell, and B. E. Clurman (2008)
J. Cell Biol. 181, 913-920
   Abstract »    Full Text »    PDF »
The molecular logic of Notch signaling - a structural and biochemical perspective.
W. R. Gordon, K. L. Arnett, and S. C. Blacklow (2008)
J. Cell Sci. 121, 3109-3119
   Abstract »    Full Text »    PDF »
Proteasomal Regulation of the Proliferation vs. Meiotic Entry Decision in the Caenorhabditis elegans Germ Line.
L. D. MacDonald, A. Knox, and D. Hansen (2008)
Genetics 180, 905-920
   Abstract »    Full Text »    PDF »
Zfp64 participates in Notch signaling and regulates differentiation in mesenchymal cells.
K. Sakamoto, Y. Tamamura, K.-i. Katsube, and A. Yamaguchi (2008)
J. Cell Sci. 121, 1613-1623
   Abstract »    Full Text »    PDF »
Downregulation by lipopolysaccharide of Notch signaling, via nitric oxide.
M.-Y. Kim, J.-H. Park, J.-S. Mo, E.-J. Ann, S.-O. Han, S.-H. Baek, K.-J. Kim, S.-Y. Im, J.-W. Park, E.-J. Choi, et al. (2008)
J. Cell Sci. 121, 1466-1476
   Abstract »    Full Text »    PDF »
SCFCdc4 acts antagonistically to the PGC-1{alpha} transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis.
B. L. Olson, M. B. Hock, S. Ekholm-Reed, J. A. Wohlschlegel, K. K. Dev, A. Kralli, and S. I. Reed (2008)
Genes & Dev. 22, 252-264
   Abstract »    Full Text »    PDF »
Notch-1 Mutations Are Secondary Events in Some Patients with T-Cell Acute Lymphoblastic Leukemia.
M. R. Mansour, V. Duke, L. Foroni, B. Patel, C. G. Allen, P. J. Ancliff, R. E. Gale, and D. C. Linch (2007)
Clin. Cancer Res. 13, 6964-6969
   Abstract »    Full Text »    PDF »
Kaposi's sarcoma herpesvirus-encoded latency-associated nuclear antigen stabilizes intracellular activated Notch by targeting the Sel10 protein.
K. Lan, S. C. Verma, M. Murakami, B. Bajaj, R. Kaul, and E. S. Robertson (2007)
PNAS 104, 16287-16292
   Abstract »    Full Text »    PDF »
Notch3 and IL-1beta exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-{kappa}B drives crosstalk.
N. Clement, M. Gueguen, M. Glorian, R. Blaise, M. Andreani, C. Brou, P. Bausero, and I. Limon (2007)
J. Cell Sci. 120, 3352-3361
   Abstract »    Full Text »    PDF »
The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia.
B. J. Thompson, S. Buonamici, M. L. Sulis, T. Palomero, T. Vilimas, G. Basso, A. Ferrando, and I. Aifantis (2007)
J. Exp. Med. 204, 1825-1835
   Abstract »    Full Text »    PDF »
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to {gamma}-secretase inhibitors.
J. O'Neil, J. Grim, P. Strack, S. Rao, D. Tibbitts, C. Winter, J. Hardwick, M. Welcker, J. P. Meijerink, R. Pieters, et al. (2007)
J. Exp. Med. 204, 1813-1824
   Abstract »    Full Text »    PDF »
Integrin-Linked Kinase Controls Notch1 Signaling by Down-Regulation of Protein Stability through Fbw7 Ubiquitin Ligase.
J.-S. Mo, M.-Y. Kim, S.-O. Han, I.-S. Kim, E.-J. Ann, K. S. Lee, M.-S. Seo, J.-Y. Kim, S.-C. Lee, J.-W. Park, et al. (2007)
Mol. Cell. Biol. 27, 5565-5574
   Abstract »    Full Text »    PDF »
Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers.
A. Krejci and S. Bray (2007)
Genes & Dev. 21, 1322-1327
   Abstract »    Full Text »    PDF »
Fbw7 Isoform Interaction Contributes to Cyclin E Proteolysis.
W. Zhang and D. M. Koepp (2006)
Mol. Cancer Res. 4, 935-943
   Abstract »    Full Text »    PDF »
Deletion of presenilin 1 hydrophilic loop sequence leads to impaired gamma-secretase activity and exacerbated amyloid pathology..
Y. Deng, L. Tarassishin, V. Kallhoff, E. Peethumnongsin, L. Wu, Y.-M. Li, and H. Zheng (2006)
J. Neurosci. 26, 3845-3854
   Abstract »    Full Text »    PDF »
Notch Signaling.
L. Miele (2006)
Clin. Cancer Res. 12, 1074-1079
   Full Text »    PDF »
A molecular link A molecular link between Hairless and Pros26.4, a member of the AAA-ATPase subunits of the proteasome 19S regulatory particle in Drosophila.
D. Muller, A. C. Nagel, D. Maier, and A. Preiss (2006)
J. Cell Sci. 119, 250-258
   Abstract »    Full Text »    PDF »
The interplay between DSL proteins and ubiquitin ligases in Notch signaling.
C. Pitsouli and C. Delidakis (2005)
Development 132, 4041-4050
   Abstract »    Full Text »    PDF »
Control of Genomic Instability and Epithelial Tumor Development by the p53-Fbxw7/Cdc4 Pathway.
J. Perez-Losada, J.-H. Mao, and A. Balmain (2005)
Cancer Res. 65, 6488-6492
   Abstract »    Full Text »    PDF »
Ras activity regulates cyclin E degradation by the Fbw7 pathway.
A. C. Minella, M. Welcker, and B. E. Clurman (2005)
PNAS 102, 9649-9654
   Abstract »    Full Text »    PDF »
The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta.
E. C. Lai, F. Roegiers, X. Qin, Y. N. Jan, and G. M. Rubin (2005)
Development 132, 2319-2332
   Abstract »    Full Text »    PDF »
Ubiquitin Chains in the Ladder of MAPK Signaling.
A. Laine and Z. Ronai (2005)
Sci. STKE 2005, re5
   Abstract »    Full Text »    PDF »
Deregulation of Cyclin E in Cancer.
S. I. Reed (2005)
Am. Assoc. Cancer Res. Educ. Book 2005, 53-56
   Full Text »    PDF »
The SV40 Large T Antigen Contains a Decoy Phosphodegron That Mediates Its Interactions with Fbw7/hCdc4.
M. Welcker and B. E. Clurman (2005)
J. Biol. Chem. 280, 7654-7658
   Abstract »    Full Text »    PDF »
Normal Immune System Development in Mice Lacking the Deltex-1 RING Finger Domain.
S. Storck, F. Delbos, N. Stadler, C. Thirion-Delalande, F. Bernex, C. Verthuy, P. Ferrier, J.-C. Weill, and C.-A. Reynaud (2005)
Mol. Cell. Biol. 25, 1437-1445
   Abstract »    Full Text »    PDF »
Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia.
A. P. Weng, A. A. Ferrando, W. Lee, J. P. Morris IV, L. B. Silverman, C. Sanchez-Irizarry, S. C. Blacklow, A. T. Look, and J. C. Aster (2004)
Science 306, 269-271
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans F-box protein SEL-10 promotes female development and may target FEM-1 and FEM-3 for degradation by the proteasome.
S. Jager, H. T. Schwartz, H. R. Horvitz, and B. Conradt (2004)
PNAS 101, 12549-12554
   Abstract »    Full Text »    PDF »
Monoubiquitination and endocytosis direct {gamma}-secretase cleavage of activated Notch receptor.
N. Gupta-Rossi, E. Six, O. LeBail, F. Logeat, P. Chastagner, A. Olry, A. Israel, and C. Brou (2004)
J. Cell Biol. 166, 73-83
   Abstract »    Full Text »    PDF »
Involvement of Notch signaling in hippocampal synaptic plasticity.
Y. Wang, S. L. Chan, L. Miele, P. J. Yao, J. Mackes, D. K. Ingram, M. P. Mattson, and K. Furukawa (2004)
PNAS 101, 9458-9462
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.
M. Yada, S. Hatakeyama, T. Kamura, M. Nishiyama, R. Tsunematsu, H. Imaki, N. Ishida, F. Okumura, K. Nakayama, and K. I. Nakayama (2004)
EMBO J. 23, 2116-2125
   Abstract »    Full Text »    PDF »
Evidence That C Promoter-binding Factor 1 Binding Is Required for Notch-1-mediated Repression of Activator Protein-1.
J. Chu and E. H. Bresnick (2004)
J. Biol. Chem. 279, 12337-12345
   Abstract »    Full Text »    PDF »
Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein.
M. T. Tetzlaff, W. Yu, M. Li, P. Zhang, M. Finegold, K. Mahon, J. W. Harper, R. J. Schwartz, and S. J. Elledge (2004)
PNAS 101, 3338-3345
   Abstract »    Full Text »    PDF »
Mouse Fbw7/Sel-10/Cdc4 Is Required for Notch Degradation during Vascular Development.
R. Tsunematsu, K. Nakayama, Y. Oike, M. Nishiyama, N. Ishida, S. Hatakeyama, Y. Bessho, R. Kageyama, T. Suda, and K. I. Nakayama (2004)
J. Biol. Chem. 279, 9417-9423
   Abstract »    Full Text »    PDF »
The Ubiquitin Ligase SCFFbw7 Antagonizes Apoptotic JNK Signaling.
A. S. Nateri, L. Riera-Sans, C. D. Costa, and A. Behrens (2004)
Science 303, 1374-1378
   Abstract »    Full Text »    PDF »
Association of Transcription Factor YY1 with the High Molecular Weight Notch Complex Suppresses the Transactivation Activity of Notch.
T.-S. Yeh, Y.-M. Lin, R.-H. Hsieh, and M.-J. Tseng (2003)
J. Biol. Chem. 278, 41963-41969
   Abstract »    Full Text »    PDF »
Phosphorylation by Glycogen Synthase Kinase-3{beta} Down-regulates Notch Activity, a Link for Notch and Wnt Pathways.
L. Espinosa, J. Ingles-Esteve, C. Aguilera, and A. Bigas (2003)
J. Biol. Chem. 278, 32227-32235
   Abstract »    Full Text »    PDF »
Mammalian Numb Proteins Promote Notch1 Receptor Ubiquitination and Degradation of the Notch1 Intracellular Domain.
M. A. McGill and C. J. McGlade (2003)
J. Biol. Chem. 278, 23196-23203
   Abstract »    Full Text »    PDF »
Two suppressors of sel-12 encode C2H2 zinc-finger proteins that regulate presenilin transcription in Caenorhabditis elegans.
B. Lakowski, S. Eimer, C. Gobel, A. Bottcher, B. Wagler, and R. Baumeister (2003)
Development 130, 2117-2128
   Abstract »    Full Text »    PDF »
hephaestus encodes a polypyrimidine tract binding protein that regulates Notch signalling during wing development in Drosophila melanogaster.
D. A. Dansereau, M. D. Lunke, A. Finkielsztein, M. A. Russell, and W. J. Brook (2003)
Development 129, 5553-5566
   Abstract »    Full Text »    PDF »
Genetic Analysis of Caenorhabditis elegans glp-1 Mutants Suggests Receptor Interaction or Competition.
A. S.-R. Pepper, D. J. Killian, and E. J. A. Hubbard (2003)
Genetics 163, 115-132
   Abstract »    Full Text »    PDF »
Presenilin-dependent Intramembrane Proteolysis of CD44 Leads to the Liberation of Its Intracellular Domain and the Secretion of an Abeta -like Peptide.
S. Lammich, M. Okochi, M. Takeda, C. Kaether, A. Capell, A.-K. Zimmer, D. Edbauer, J. Walter, H. Steiner, and C. Haass (2002)
J. Biol. Chem. 277, 44754-44759
   Abstract »    Full Text »    PDF »
The Notch Ligand Jagged-1 Is Able to Induce Maturation of Monocyte-Derived Human Dendritic Cells.
S. Weijzen, M. P. Velders, A. G. Elmishad, P. E. Bacon, J. R. Panella, B. J. Nickoloff, L. Miele, and W. M. Kast (2002)
J. Immunol. 169, 4273-4278
   Abstract »    Full Text »    PDF »
hCDC4 Gene Mutations in Endometrial Cancer.
C. H. Spruck, H. Strohmaier, O. Sangfelt, H. M. Muller, M. Hubalek, E. Muller-Holzner, C. Marth, M. Widschwendter, and S. I. Reed (2002)
Cancer Res. 62, 4535-4539
   Abstract »    Full Text »    PDF »
Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex.
C. J. Fryer, E. Lamar, I. Turbachova, C. Kintner, and K. A. Jones (2002)
Genes & Dev. 16, 1397-1411
   Abstract »    Full Text »    PDF »
Insulin-degrading Enzyme Rapidly Removes the beta -Amyloid Precursor Protein Intracellular Domain (AICD).
D. Edbauer, M. Willem, S. Lammich, H. Steiner, and C. Haass (2002)
J. Biol. Chem. 277, 13389-13393
   Abstract »    Full Text »    PDF »
Notch: a membrane-bound transcription factor.
R. Kopan (2002)
J. Cell Sci. 115, 1095-1097
   Full Text »    PDF »
c-Cbl Binding and Ubiquitin-dependent Lysosomal Degradation of Membrane-associated Notch1.
B. M. Jehn, I. Dittert, S. Beyer, K. von der Mark, and W. Bielke (2002)
J. Biol. Chem. 277, 8033-8040
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882