Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 276 (41): 38061-38067

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Decreased Cardiolipin Synthesis Corresponds with Cytochrome c Release in Palmitate-induced Cardiomyocyte Apoptosis*

Darin B. OstranderDagger §, Genevieve C. SparagnaDagger §, Andrew A. Amoscato, Jeanie B. McMillinDagger , and William DowhanDagger **

From the Departments of Dagger  Biochemistry and Molecular Biology and Pathology and Laboratory Medicine, University of Texas-Houston, Medical School, Houston, Texas 77030 and the Mass Spectrometry Facility, University of Pittsburgh Center for Biotechnology and Bioengineering, Pittsburgh, Pennsylvania 15219 and the  Department of Pathology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213

Apoptosis has been identified recently as a component of many cardiac pathologies. However, the potential triggers of programmed cell death in the heart and the involvement of specific metabolic pathway(s) are less well characterized. Detachment of cytochrome c from the mitochondrial inner membrane is a necessary first step for cytochrome c release into the cytosol and initiation of apoptosis. The saturated long chain fatty acid, palmitate, induces apoptosis in rat neonatal cardiomyocytes and diminishes content of the mitochondrial anionic phospholipid, cardiolipin. These changes are accompanied by 1) acyl chain saturation of phosphatidic acid and phosphatidylglycerol, 2) large increases in the levels of these two phospholipids, and 3) a decline in cardiolipin synthesis. Although cardiolipin synthase activity is unchanged, saturated phosphatidylglycerol is a poor substrate for this enzyme. Under these conditions, decreased cardiolipin synthesis and release of cytochrome c are directly and significantly correlated. The results suggest that phosphatidylglycerol saturation and subsequent decreases in cardiolipin affect the association of cytochrome c with the inner mitochondrial membrane, directly influencing the pathway to cytochrome c release and subsequent apoptosis.

* This work was supported in part by National Institutes of Health Grants GM56389 (to W. D.) and 5P30CA47904-12 (to A. A. A), American Heart Association Grant 9950584N (to J. B. M.), and NHLBI National Institutes of Health Grants HL10304 (to D. B. O.) and HL10019 (to G. C. S.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Both authors contributed equally to this work.

** To whom correspondence should be addressed. Tel.: 713-500-6051; Fax: 713-500-0652; E-mail:

Copyright © 2001 by The American Society for Biochemistry and Molecular Biology, Inc.

Unremodeled and Remodeled Cardiolipin Are Functionally Indistinguishable in Yeast.
M. G. Baile, M. Sathappa, Y.-W. Lu, E. Pryce, K. Whited, J. M. McCaffery, X. Han, N. N. Alder, and S. M. Claypool (2014)
J. Biol. Chem. 289, 1768-1778
   Abstract »    Full Text »    PDF »
Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling.
M. G. Baile, K. Whited, and S. M. Claypool (2013)
Mol. Biol. Cell 24, 2008-2020
   Abstract »    Full Text »    PDF »
TLR4 Activation Under Lipotoxic Conditions Leads to Synergistic Macrophage Cell Death through a TRIF-Dependent Pathway.
J. D. Schilling, H. M. Machkovech, L. He, A. Diwan, and J. E. Schaffer (2013)
J. Immunol. 190, 1285-1296
   Abstract »    Full Text »    PDF »
Cardiolipin-dependent Reconstitution of Respiratory Supercomplexes from Purified Saccharomyces cerevisiae Complexes III and IV.
S. Bazan, E. Mileykovskaya, V. K. P. S. Mallampalli, P. Heacock, G. C. Sparagna, and W. Dowhan (2013)
J. Biol. Chem. 288, 401-411
   Abstract »    Full Text »    PDF »
SmD3 Regulates Intronic Noncoding RNA Biogenesis.
B. S. Scruggs, C. I. Michel, D. S. Ory, and J. E. Schaffer (2012)
Mol. Cell. Biol. 32, 4092-4103
   Abstract »    Full Text »    PDF »
NAD(P)H Cytochrome b5 Oxidoreductase Deficiency in Leishmania major Results in Impaired Linoleate Synthesis Followed by Increased Oxidative Stress and Cell Death.
S. Mukherjee, S. Sen Santara, S. Das, M. Bose, J. Roy, and S. Adak (2012)
J. Biol. Chem. 287, 34992-35003
   Abstract »    Full Text »    PDF »
Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart.
C. M. Mulligan, G. C. Sparagna, C. H. Le, A. B. De Mooy, M. A. Routh, M. G. Holmes, D. L. Hickson-Bick, S. Zarini, R. C. Murphy, F. Y. Xu, et al. (2012)
Cardiovasc Res 94, 460-468
   Abstract »    Full Text »    PDF »
Cardiomyocyte Specific Deficiency of Serine Palmitoyltransferase Subunit 2 Reduces Ceramide but Leads to Cardiac Dysfunction.
S.-Y. Lee, J. R. Kim, Y. Hu, R. Khan, S.-J. Kim, K. G. Bharadwaj, M. M. Davidson, C.-S. Choi, K.-O. Shin, Y.-M. Lee, et al. (2012)
J. Biol. Chem. 287, 18429-18439
   Abstract »    Full Text »    PDF »
The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p.
C. H. De Smet, E. Vittone, M. Scherer, M. Houweling, G. Liebisch, J. F. Brouwers, and A. I. P. M. de Kroon (2012)
Mol. Biol. Cell 23, 1146-1156
   Abstract »    Full Text »    PDF »
Relationship of glucose and oleate metabolism to cardiac function in lipin-1 deficient (fld) mice.
B. P. C. Kok, P. C. Kienesberger, J. R. B. Dyck, and D. N. Brindley (2012)
J. Lipid Res. 53, 105-118
   Abstract »    Full Text »    PDF »
Lipotoxicity Causes Multisystem Organ Failure and Exacerbates Acute Pancreatitis in Obesity.
S. Navina, C. Acharya, J. P. DeLany, L. S. Orlichenko, C. J. Baty, S. S. Shiva, C. Durgampudi, J. M. Karlsson, K. Lee, K. T. Bae, et al. (2011)
Science Translational Medicine 3, 107ra110
   Abstract »    Full Text »    PDF »
Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance.
M. S. Han, Y.-M. Lim, W. Quan, J. R. Kim, K. W. Chung, M. Kang, S. Kim, S. Y. Park, J.-S. Han, S.-Y. Park, et al. (2011)
J. Lipid Res. 52, 1234-1246
   Abstract »    Full Text »    PDF »
Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila.
H.-Y. Lim, W. Wang, R. J. Wessells, K. Ocorr, and R. Bodmer (2011)
Genes & Dev. 25, 189-200
   Abstract »    Full Text »    PDF »
Changes in mitochondrial surface charge mediate recruitment of signaling molecules during apoptosis.
B. Heit, T. Yeung, and S. Grinstein (2011)
Am J Physiol Cell Physiol 300, C33-C41
   Abstract »    Full Text »    PDF »
ApoA-1 in Diabetes: Damaged Goods.
D. S. Ory and J. E. Schaffer (2010)
Diabetes 59, 2358-2359
   Full Text »    PDF »
Decrease in Membrane Phospholipid Unsaturation Induces Unfolded Protein Response.
H. Ariyama, N. Kono, S. Matsuda, T. Inoue, and H. Arai (2010)
J. Biol. Chem. 285, 22027-22035
   Abstract »    Full Text »    PDF »
Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization.
D. N. Brindley, B. P. C. Kok, P. C. Kienesberger, R. Lehner, and J. R. B. Dyck (2010)
Am J Physiol Endocrinol Metab 298, E897-E908
   Abstract »    Full Text »    PDF »
The role of calcium-independent phospholipase A2 in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart.
D. K. Zachman, A. J. Chicco, S. A. McCune, R. C. Murphy, R. L. Moore, and G. C. Sparagna (2010)
J. Lipid Res. 51, 525-534
   Abstract »    Full Text »    PDF »
The flavoheme reductase Ncb5or protects cells against endoplasmic reticulum stress-induced lipotoxicity.
Y. Zhang, K. Larade, Z.-g. Jiang, S. Ito, W. Wang, H. Zhu, and H. F. Bunn (2010)
J. Lipid Res. 51, 53-62
   Abstract »    Full Text »    PDF »
Stearic acid-induced cardiac lipotoxicity is independent of cellular lipid and is mitigated by the fatty acids oleic and capric acid but not by the PPAR agonist troglitazone.
S. W. Rabkin and P. Lodha (2009)
Exp Physiol 94, 877-887
   Abstract »    Full Text »    PDF »
Effect of chronic exercise on DNA fragmentation and on lipid profiles in rat skeletal muscle.
S. Tsalouhidou, A. Petridou, and V. Mougios (2009)
Exp Physiol 94, 362-370
   Abstract »    Full Text »    PDF »
Linoleate-Rich High-Fat Diet Decreases Mortality in Hypertensive Heart Failure Rats Compared With Lard and Low-Fat Diets.
A. J. Chicco, G. C. Sparagna, S. A. McCune, C. A. Johnson, R. C. Murphy, D. A. Bolden, M. L. Rees, R. T. Gardner, and R. L. Moore (2008)
Hypertension 52, 549-555
   Abstract »    Full Text »    PDF »
Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast.
C. P. Low, G. Shui, L. P. Liew, S. Buttner, F. Madeo, I. W. Dawes, M. R. Wenk, and H. Yang (2008)
J. Cell Sci. 121, 2671-2684
   Abstract »    Full Text »    PDF »
Thematic Review Series: Glycerolipids. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes.
M. Schlame (2008)
J. Lipid Res. 49, 1607-1620
   Abstract »    Full Text »    PDF »
Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes.
M. S. Han, S. Y. Park, K. Shinzawa, S. Kim, K. W. Chung, J.-H. Lee, C. H. Kwon, K.-W. Lee, J.-H. Lee, C. K. Park, et al. (2008)
J. Lipid Res. 49, 84-97
   Abstract »    Full Text »    PDF »
Role of cardiolipin alterations in mitochondrial dysfunction and disease.
A. J. Chicco and G. C. Sparagna (2007)
Am J Physiol Cell Physiol 292, C33-C44
   Abstract »    Full Text »    PDF »
Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.
N. M. Borradaile, X. Han, J. D. Harp, S. E. Gale, D. S. Ory, and J. E. Schaffer (2006)
J. Lipid Res. 47, 2726-2737
   Abstract »    Full Text »    PDF »
Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance.
S. M. Turpin, G. I. Lancaster, I. Darby, M. A. Febbraio, and M. J. Watt (2006)
Am J Physiol Endocrinol Metab 291, E1341-E1350
   Abstract »    Full Text »    PDF »
Role of changes in cardiac metabolism in development of diabetic cardiomyopathy.
D. An and B. Rodrigues (2006)
Am J Physiol Heart Circ Physiol 291, H1489-H1506
   Abstract »    Full Text »    PDF »
Cardiac and Clinical Phenotype in Barth Syndrome.
C. T. Spencer, R. M. Bryant, J. Day, I. L. Gonzalez, S. D. Colan, W. R. Thompson, J. Berthy, S. P. Redfearn, and B. J. Byrne (2006)
Pediatrics 118, e337-e346
   Abstract »    Full Text »    PDF »
Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS1).
B. Lu, F. Y. Xu, Y. J. Jiang, P. C. Choy, G. M. Hatch, C. Grunfeld, and K. R. Feingold (2006)
J. Lipid Res. 47, 1140-1145
   Abstract »    Full Text »    PDF »
A Critical Role for Eukaryotic Elongation Factor 1A-1 in Lipotoxic Cell Death.
N. M. Borradaile, K. K. Buhman, L. L. Listenberger, C. J. Magee, E. T.A. Morimoto, D. S. Ory, and J. E. Schaffer (2006)
Mol. Biol. Cell 17, 770-778
   Abstract »    Full Text »    PDF »
Increased Fatty Acid Desaturation and Enhanced Expression of Stearoyl Coenzyme A Desaturase Protects Pancreatic {beta}-Cells from Lipoapoptosis.
A. K. Busch, E. Gurisik, D. V. Cordery, M. Sudlow, G. S. Denyer, D. R. Laybutt, W. E. Hughes, and T. J. Biden (2005)
Diabetes 54, 2917-2924
   Abstract »    Full Text »    PDF »
Myocardial Substrate Metabolism in the Normal and Failing Heart.
W. C. Stanley, F. A. Recchia, and G. D. Lopaschuk (2005)
Physiol Rev 85, 1093-1129
   Abstract »    Full Text »    PDF »
Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry.
G. C. Sparagna, C. A. Johnson, S. A. McCune, R. L. Moore, and R. C. Murphy (2005)
J. Lipid Res. 46, 1196-1204
   Abstract »    Full Text »    PDF »
Free Fatty Acids Inhibit Serum Deprivation-induced Apoptosis through GPR120 in a Murine Enteroendocrine Cell Line STC-1.
S. Katsuma, N. Hatae, T. Yano, Y. Ruike, M. Kimura, A. Hirasawa, and G. Tsujimoto (2005)
J. Biol. Chem. 280, 19507-19515
   Abstract »    Full Text »    PDF »
Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes.
T. M. Lewin, S. Wang, C. A. Nagle, C. G. Van Horn, and R. A. Coleman (2005)
Am J Physiol Endocrinol Metab 288, E835-E844
   Abstract »    Full Text »    PDF »
Newcomers in the process of mitochondrial permeabilization.
S. Lucken-Ardjomande and J.-C. Martinou (2005)
J. Cell Sci. 118, 473-483
   Abstract »    Full Text »    PDF »
Ca2+-induced Reactive Oxygen Species Production Promotes Cytochrome c Release from Rat Liver Mitochondria via Mitochondrial Permeability Transition (MPT)-dependent and MPT-independent Mechanisms: ROLE OF CARDIOLIPIN.
G. Petrosillo, F. M. Ruggiero, M. Pistolese, and G. Paradies (2004)
J. Biol. Chem. 279, 53103-53108
   Abstract »    Full Text »    PDF »
Attenuation of fatty acid-induced apoptosis by low-dose alcohol in neonatal rat cardiomyocytes.
G. C. Sparagna, C. E. Jones, and D. L. M. Hickson-Bick (2004)
Am J Physiol Heart Circ Physiol 287, H2209-H2215
   Abstract »    Full Text »    PDF »
CD36 in Myocytes Channels Fatty Acids to a Lipase-Accessible Triglyceride Pool That Is Related to Cell Lipid and Insulin Responsiveness.
C. C. Bastie, T. Hajri, V. A. Drover, P. A. Grimaldi, and N. A. Abumrad (2004)
Diabetes 53, 2209-2216
   Abstract »    Full Text »    PDF »
Conformation of Membrane-associated Proapoptotic tBid.
X.-M. Gong, J. Choi, C. M. Franzin, D. Zhai, J. C. Reed, and F. M. Marassi (2004)
J. Biol. Chem. 279, 28954-28960
   Abstract »    Full Text »    PDF »
Cardiolipin Is Not Required for Bax-mediated Cytochrome c Release from Yeast Mitochondria.
S. L. Iverson, M. Enoksson, V. Gogvadze, M. Ott, and S. Orrenius (2004)
J. Biol. Chem. 279, 1100-1107
   Abstract »    Full Text »    PDF »
Cardiolipin Stabilizes Respiratory Chain Supercomplexes.
K. Pfeiffer, V. Gohil, R. A. Stuart, C. Hunte, U. Brandt, M. L. Greenberg, and H. Schagger (2003)
J. Biol. Chem. 278, 52873-52880
   Abstract »    Full Text »    PDF »
Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria.
FASEB J 17, 2202-2208
   Abstract »    Full Text »    PDF »
Cardiolipin Is Not Required to Maintain Mitochondrial DNA Stability or Cell Viability for Saccharomyces cerevisiae Grown at Elevated Temperatures.
M. Zhang, X. Su, E. Mileykovskaya, A. A. Amoscato, and W. Dowhan (2003)
J. Biol. Chem. 278, 35204-35210
   Abstract »    Full Text »    PDF »
Saturated Fatty Acid-induced Apoptosis in MDA-MB-231 Breast Cancer Cells: A ROLE FOR CARDIOLIPIN.
S. Hardy, W. El-Assaad, E. Przybytkowski, E. Joly, M. Prentki, and Y. Langelier (2003)
J. Biol. Chem. 278, 31861-31870
   Abstract »    Full Text »    PDF »
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.
L. L. Listenberger, X. Han, S. E. Lewis, S. Cases, R. V. Farese Jr., D. S. Ory, and J. E. Schaffer (2003)
PNAS 100, 3077-3082
   Abstract »    Full Text »    PDF »
Fatty acid metabolism in cardiac failure: biochemical, genetic and cellular analysis.
J. Marin-Garcia and M. J. Goldenthal (2002)
Cardiovasc Res 54, 516-527
   Full Text »    PDF »
Exogenous Phospholipids Specifically Affect Transmembrane Potential of Brain Mitochondria and Cytochrome cRelease.
L. Piccotti, C. Marchetti, G. Migliorati, R. Roberti, and L. Corazzi (2002)
J. Biol. Chem. 277, 12075-12081
   Abstract »    Full Text »    PDF »
Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS.
D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin (2002)
Am J Physiol Heart Circ Physiol 282, H656-H664
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882