Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 277 (13): 11336-11344

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Linking β-Catenin to Androgen-signaling Pathway*

Fajun Yang{ddagger}, Xiaoyu Li§, Manju Sharma{ddagger}, Carl Y. Sasaki, Dan L. Longo, Bing Lim§, , and Zijie Sun{ddagger}||

From the {ddagger}Department of Surgery and Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5328, the §Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224

ABSTRACT Back to Top

Abstract: The androgen-signaling pathway is important for the growth and progression of prostate cancer cells. The growth-promoting effects of androgen on prostate cells are mediated mostly through the androgen receptor (AR). There is increasing evidence that transcription activation by AR is mediated through interaction with other cofactors. β-Catenin plays a critical role in embryonic development and tumorigenesis through its effects on E-cadherin-mediated cell adhesion and Wnt-dependent signal transduction. Here, we demonstrate that a specific protein-protein interaction occurs between β-catenin and AR. Unlike the steroid hormone receptor coactivator 1 (SRC1), β-catenin showed a strong interaction with AR but not with other steroid hormone receptors such as estrogen receptor α, progesterone receptor β, and glucocorticoid receptor. The ligand binding domain of AR and the NH2terminus combined with the first six armadillo repeats of β-catenin were shown to be necessary for the interaction. Through this specific interaction, β-catenin augments the ligand-dependent activity of AR in prostate cancer cells. Moreover, expression of E-cadherin in E-cadherin-negative prostate cancer cells results in redistribution of the cytoplasmic β-catenin to the cell membrane and reduction of AR-mediated transcription. These data suggest that loss of E-cadherin can elevate the cellular levels of β-catenin in prostate cancer cells, which may directly contribute to invasiveness and a more malignant tumor phenotype by augmenting AR activity during prostate cancer progression.


Received for publication December 14, 2001. Revision received January 8, 2002.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Identification of a Novel Role of ZMIZ2 Protein in Regulating the Activity of the Wnt/{beta}-Catenin Signaling Pathway.
S. H. Lee, C. Zhu, Y. Peng, D. T. Johnson, L. Lehmann, and Z. Sun (2013)
J. Biol. Chem. 288, 35913-35924
   Abstract »    Full Text »    PDF »
Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study.
H. Ma, A. Thapa, L. M. Morris, S. Michalakis, M. Biel, M. B. Frank, M. Bebak, and X.-Q. Ding (2013)
Hum. Mol. Genet. 22, 3906-3919
   Abstract »    Full Text »    PDF »
Constitutive {beta}-Catenin Activation Induces Male-Specific Tumorigenesis in the Bladder Urothelium.
C. Lin, Y. Yin, K. Stemler, P. Humphrey, A. S. Kibel, I. U. Mysorekar, and L. Ma (2013)
Cancer Res. 73, 5914-5925
   Abstract »    Full Text »    PDF »
Androgens Up-regulate Transcription of the Notch Inhibitor Numb in C2C12 Myoblasts via Wnt/{beta}-Catenin Signaling to T Cell Factor Elements in the Numb Promoter.
X.-H. Liu, Y. Wu, S. Yao, A. C. Levine, A. Kirschenbaum, L. Collier, W. A. Bauman, and C. P. Cardozo (2013)
J. Biol. Chem. 288, 17990-17998
   Abstract »    Full Text »    PDF »
Androgen activates {beta}-catenin signaling in bladder cancer cells.
Y. Li, Y. Zheng, K. Izumi, H. Ishiguro, B. Ye, F. Li, and H. Miyamoto (2013)
Endocr. Relat. Cancer 20, 293-304
   Abstract »    Full Text »    PDF »
Role of WNT7B-induced Noncanonical Pathway in Advanced Prostate Cancer.
D. Zheng, K. F. Decker, T. Zhou, J. Chen, Z. Qi, K. Jacobs, K. N. Weilbaecher, E. Corey, F. Long, and L. Jia (2013)
Mol. Cancer Res. 11, 482-493
   Abstract »    Full Text »    PDF »
Lgr4-mediated Wnt/{beta}-catenin signaling in peritubular myoid cells is essential for spermatogenesis.
Y. Qian, S. Liu, Y. Guan, H. Pan, X. Guan, Z. Qiu, L. Li, N. Gao, Y. Zhao, X. Li, et al. (2013)
Development 140, 1751-1761
   Abstract »    Full Text »    PDF »
TCF/LEFs and Wnt Signaling in the Nucleus.
K. M. Cadigan and M. L. Waterman (2012)
Cold Spring Harb Perspect Biol 4, a007906
   Abstract »    Full Text »    PDF »
Coordinated Action of Hypoxia-inducible Factor-1{alpha} and {beta}-Catenin in Androgen Receptor Signaling.
T. Mitani, N. Harada, Y. Nakano, H. Inui, and R. Yamaji (2012)
J. Biol. Chem. 287, 33594-33606
   Abstract »    Full Text »    PDF »
Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis.
M. Okamoto, Y. Hojo, K. Inoue, T. Matsui, S. Kawato, B. S. McEwen, and H. Soya (2012)
PNAS 109, 13100-13105
   Abstract »    Full Text »    PDF »
Modulation of Wnt/{beta}-catenin signaling pathway by bioactive food components.
R. S. Tarapore, I. A. Siddiqui, and H. Mukhtar (2012)
Carcinogenesis 33, 483-491
   Abstract »    Full Text »    PDF »
Structural basis of coactivation of liver receptor homolog-1 by {beta}-catenin.
F. Yumoto, P. Nguyen, E. P. Sablin, J. D. Baxter, P. Webb, and R. J. Fletterick (2012)
PNAS 109, 143-148
   Abstract »    Full Text »    PDF »
Mixed Lineage Kinase 3 Modulates {beta}-Catenin Signaling in Cancer Cells.
R. P. Thylur, S. Senthivinayagam, E. M. Campbell, V. Rangasamy, N. Thorenoor, G. Sondarva, S. Mehrotra, P. Mishra, E. Zook, P. T. Le, et al. (2011)
J. Biol. Chem. 286, 37470-37482
   Abstract »    Full Text »    PDF »
Androgen-Sensitive Microsomal Signaling Networks Coupled to the Proliferation and Differentiation of Human Prostate Cancer Cells.
H. D. Martinez, J. J. Hsiao, R. J. Jasavala, I. V. Hinkson, J. K. Eng, and M. E. Wright (2011)
Genes & Cancer 2, 956-978
   Abstract »    Full Text »    PDF »
Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target.
M. Shiota, A. Yokomizo, and S. Naito (2011)
J. Mol. Endocrinol. 47, R25-R41
   Abstract »    Full Text »    PDF »
A Novel Role for Protein Inhibitor of Activated STAT (PIAS) Proteins in Modulating the Activity of Zimp7, a Novel PIAS-like Protein, in Androgen Receptor-mediated Transcription.
Y. Peng, J. Lee, C. Zhu, and Z. Sun (2010)
J. Biol. Chem. 285, 11465-11475
   Abstract »    Full Text »    PDF »
Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of {beta}-catenin.
M. A Gentile, P. V Nantermet, R. L Vogel, R. Phillips, D. Holder, P. Hodor, C. Cheng, H. Dai, L. P Freedman, and W. J Ray (2010)
J. Mol. Endocrinol. 44, 55-73
   Abstract »    Full Text »    PDF »
MUC1 oncoprotein is a druggable target in human prostate cancer cells.
M. D. Joshi, R. Ahmad, L. Yin, D. Raina, H. Rajabi, G. Bubley, S. Kharbanda, and D. Kufe (2009)
Mol. Cancer Ther. 8, 3056-3065
   Abstract »    Full Text »    PDF »
Conditional Deletion of Beta-Catenin Mediated by Amhr2cre in Mice Causes Female Infertility.
J. A. Hernandez Gifford, M. E. Hunzicker-Dunn, and J. H. Nilson (2009)
Biol Reprod 80, 1282-1292
   Abstract »    Full Text »    PDF »
Protein Kinase D1-Mediated Phosphorylation and Subcellular Localization of {beta}-Catenin.
C. Du, M. Jaggi, C. Zhang, and K.C. Balaji (2009)
Cancer Res. 69, 1117-1124
   Abstract »    Full Text »    PDF »
Crosstalk between the Androgen Receptor and {beta}-Catenin in Castrate-Resistant Prostate Cancer.
G. Wang, J. Wang, and M. D. Sadar (2008)
Cancer Res. 68, 9918-9927
   Abstract »    Full Text »    PDF »
Silencing Mediator for Retinoid and Thyroid Hormone Receptor and Nuclear Receptor Corepressor Attenuate Transcriptional Activation by the {beta}-Catenin-TCF4 Complex.
L.-N. Song and E. P. Gelmann (2008)
J. Biol. Chem. 283, 25988-25999
   Abstract »    Full Text »    PDF »
Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.
X. Liu, J. D. Allen, J. T. Arnold, and M. R. Blackman (2008)
Carcinogenesis 29, 816-823
   Abstract »    Full Text »    PDF »
Dicarbonyl/L-Xylulose Reductase: A Potential Biomarker Identified by Laser-Capture Microdissection-Micro Serial Analysis of Gene Expression of Human Prostate Adenocarcinoma.
J. H. Cho-Vega, S. Tsavachidis, K.-A. Do, J. Nakagawa, L. J. Medeiros, and T. J. McDonnell (2007)
Cancer Epidemiol. Biomarkers Prev. 16, 2615-2622
   Abstract »    Full Text »    PDF »
Androgen Receptor Regulation of the Versican Gene through an Androgen Response Element in the Proximal Promoter.
J. T. Read, M. Rahmani, S. Boroomand, S. Allahverdian, B. M. McManus, and P. S. Rennie (2007)
J. Biol. Chem. 282, 31954-31963
   Abstract »    Full Text »    PDF »
The novel PIAS-like protein hZimp10 is a transcriptional co-activator of the p53 tumor suppressor.
J. Lee, J. Beliakoff, and Z. Sun (2007)
Nucleic Acids Res. 35, 4523-4534
   Abstract »    Full Text »    PDF »
Integration of Estrogen and Wnt Signaling Circuits by the Polycomb Group Protein EZH2 in Breast Cancer Cells.
B. Shi, J. Liang, X. Yang, Y. Wang, Y. Zhao, H. Wu, L. Sun, Y. Zhang, Y. Chen, R. Li, et al. (2007)
Mol. Cell. Biol. 27, 5105-5119
   Abstract »    Full Text »    PDF »
Wnt/beta-Catenin Signaling Is a Component of Osteoblastic Bone Cell Early Responses to Load-bearing and Requires Estrogen Receptor {alpha}.
V. J. Armstrong, M. Muzylak, A. Sunters, G. Zaman, L. K. Saxon, J. S. Price, and L. E. Lanyon (2007)
J. Biol. Chem. 282, 20715-20727
   Abstract »    Full Text »    PDF »
Androgen-Induced Wnt Signaling in Preosteoblasts Promotes the Growth of MDA-PCa-2b Human Prostate Cancer Cells.
X.-H. Liu, A. Kirschenbaum, S. Yao, G. Liu, S. A. Aaronson, and A. C. Levine (2007)
Cancer Res. 67, 5747-5753
   Abstract »    Full Text »    PDF »
Vitamin D receptor is essential for normal keratinocyte stem cell function.
L. Cianferotti, M. Cox, K. Skorija, and M. B. Demay (2007)
PNAS 104, 9428-9433
   Abstract »    Full Text »    PDF »
A promoting role of androgen receptor in androgen-sensitive and -insensitive prostate cancer cells.
T.-H. Li, H. Zhao, Y. Peng, J. Beliakoff, J. D. Brooks, and Z. Sun (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Role of GAC63 in transcriptional activation mediated by {beta}-catenin.
Y.-H. Chen, C. K. Yang, M. Xia, C.-Y. Ou, and M. R. Stallcup (2007)
Nucleic Acids Res. 35, 2084-2092
   Abstract »    Full Text »    PDF »
The Androgen Receptor Negatively Regulates the Expression of c-Met: Implications for a Novel Mechanism of Prostate Cancer Progression.
M. Verras, J. Lee, H. Xue, T.-H. Li, Y. Wang, and Z. Sun (2007)
Cancer Res. 67, 967-975
   Abstract »    Full Text »    PDF »
A Glycolytic Mechanism Regulating an Angiogenic Switch in Prostate Cancer.
J. Wang, J. Wang, J. Dai, Y. Jung, C.-L. Wei, Y. Wang, A. M. Havens, P. J. Hogg, E. T. Keller, K. J. Pienta, et al. (2007)
Cancer Res. 67, 149-159
   Abstract »    Full Text »    PDF »
LZTS2 Is a Novel {beta}-Catenin-Interacting Protein and Regulates the Nuclear Export of {beta}-Catenin.
G. Thyssen, T.-H. Li, L. Lehmann, M. Zhuo, M. Sharma, and Z. Sun (2006)
Mol. Cell. Biol. 26, 8857-8867
   Abstract »    Full Text »    PDF »
The Wnt Co-receptor LRP5 Is Essential for Skeletal Mechanotransduction but Not for the Anabolic Bone Response to Parathyroid Hormone Treatment.
K. Sawakami, A. G. Robling, M. Ai, N. D. Pitner, D. Liu, S. J. Warden, J. Li, P. Maye, D. W. Rowe, R. L. Duncan, et al. (2006)
J. Biol. Chem. 281, 23698-23711
   Abstract »    Full Text »    PDF »
The Glucocorticoid Receptor Represses Cyclin D1 by Targeting the Tcf-beta-Catenin Complex.
S. Takayama, I. Rogatsky, L. E. Schwarcz, and B. D. Darimont (2006)
J. Biol. Chem. 281, 17856-17863
   Abstract »    Full Text »    PDF »
Activation of {beta}-Catenin Signaling in Prostate Cancer by Peptidyl-Prolyl Isomerase Pin1-Mediated Abrogation of the Androgen Receptor-{beta}-Catenin Interaction.
S.-Y. Chen, G. Wulf, X. Z. Zhou, M. A. Rubin, K. P. Lu, and S. P. Balk (2006)
Mol. Cell. Biol. 26, 929-939
   Abstract »    Full Text »    PDF »
HIC-5 Is a Novel Repressor of Lymphoid Enhancer Factor/T-cell Factor-driven Transcription.
S. M. Ghogomu, S. van Venrooy, M. Ritthaler, D. Wedlich, and D. Gradl (2006)
J. Biol. Chem. 281, 1755-1764
   Abstract »    Full Text »    PDF »
Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies.
M. Mimeault and S. K. Batra (2006)
Carcinogenesis 27, 1-22
   Abstract »    Full Text »    PDF »
Repression of {beta}-catenin function in malignant cells by nonsteroidal antiinflammatory drugs.
D. Lu, H. B. Cottam, M. Corr, and D. A. Carson (2005)
PNAS 102, 18567-18571
   Abstract »    Full Text »    PDF »
Cell-specific Regulation of Androgen Receptor Phosphorylation in Vivo.
S. S. Taneja, S. Ha, N. K. Swenson, H. Y. Huang, P. Lee, J. Melamed, E. Shapiro, M. J. Garabedian, and S. K. Logan (2005)
J. Biol. Chem. 280, 40916-40924
   Abstract »    Full Text »    PDF »
Interaction of {beta}-Catenin and TIF2/GRIP1 in Transcriptional Activation by the Androgen Receptor.
L.-N. Song and E. P. Gelmann (2005)
J. Biol. Chem. 280, 37853-37867
   Abstract »    Full Text »    PDF »
Involvement of {beta}-catenin and unusual behavior of CBP and p300 in glucocorticosteroid signaling in Schwann cells.
C. Fonte, J. Grenier, A. Trousson, A. Chauchereau, O. Lahuna, E.-E. Baulieu, M. Schumacher, and C. Massaad (2005)
PNAS 102, 14260-14265
   Abstract »    Full Text »    PDF »
Wnt3a Growth Factor Induces Androgen Receptor-Mediated Transcription and Enhances Cell Growth in Human Prostate Cancer Cells.
M. Verras, J. Brown, X. Li, R. Nusse, and Z. Sun (2004)
Cancer Res. 64, 8860-8866
   Abstract »    Full Text »    PDF »
Analysis of Wnt Gene Expression in Prostate Cancer: Mutual Inhibition by WNT11 and the Androgen Receptor.
H. Zhu, M. Mazor, Y. Kawano, M. M. Walker, H. Y. Leung, K. Armstrong, J. Waxman, and R. M. Kypta (2004)
Cancer Res. 64, 7918-7926
   Abstract »    Full Text »    PDF »
Regulating the Balance between Peroxisome Proliferator-activated Receptor {gamma} and {beta}-Catenin Signaling during Adipogenesis: A GLYCOGEN SYNTHASE KINASE 3{beta} PHOSPHORYLATION-DEFECTIVE MUTANT OF {beta}-CATENIN INHIBITS EXPRESSION OF A SUBSET OF ADIPOGENIC GENES.
J. Liu and S. R. Farmer (2004)
J. Biol. Chem. 279, 45020-45027
   Abstract »    Full Text »    PDF »
Wnt/{beta}-Catenin and Estrogen Signaling Converge in Vivo.
A. P. Kouzmenko, K.-i. Takeyama, S. Ito, T. Furutani, S. Sawatsubashi, A. Maki, E. Suzuki, Y. Kawasaki, T. Akiyama, T. Tabata, et al. (2004)
J. Biol. Chem. 279, 40255-40258
   Abstract »    Full Text »    PDF »
Matrix Metalloproteinase Activity Modulates Tumor Size, Cell Motility, and Cell Invasiveness in Murine Aggressive Fibromatosis.
Y. Kong, R. Poon, P. Nadesan, T. Di Muccio, R. Fodde, R. Khokha, and B. A. Alman (2004)
Cancer Res. 64, 5795-5803
   Abstract »    Full Text »    PDF »
Acetylation of {beta}-Catenin by p300 Regulates {beta}-Catenin-Tcf4 Interaction.
L. Levy, Y. Wei, C. Labalette, Y. Wu, C.-A. Renard, M. A. Buendia, and C. Neuveut (2004)
Mol. Cell. Biol. 24, 3404-3414
   Abstract »    Full Text »    PDF »
Identification of Aryl Hydrocarbon Receptor as a Putative Wnt/{beta}-Catenin Pathway Target Gene in Prostate Cancer Cells.
D. R. Chesire, T. A. Dunn, C. M. Ewing, J. Luo, and W. B. Isaacs (2004)
Cancer Res. 64, 2523-2533
   Abstract »    Full Text »    PDF »
Androgen Receptor Coregulators in Prostate Cancer: Mechanisms and Clinical Implications.
M. Rahman, H. Miyamoto, and C. Chang (2004)
Clin. Cancer Res. 10, 2208-2219
   Full Text »    PDF »
Androgens, ApoE, and Alzheimer's Disease.
J. Raber (2004)
Sci. Aging Knowl. Environ. 2004, re2
   Abstract »    Full Text »    PDF »
Synergistic Effects of Coactivators GRIP1 and {beta}-Catenin on Gene Activation: CROSS-TALK BETWEEN ANDROGEN RECEPTOR AND Wnt SIGNALING PATHWAYS.
H. Li, J. H. Kim, S. S. Koh, and M. R. Stallcup (2004)
J. Biol. Chem. 279, 4212-4220
   Abstract »    Full Text »    PDF »
Mechanism of p21-activated Kinase 6-mediated Inhibition of Androgen Receptor Signaling.
N. Schrantz, J. d. S. Correia, B. Fowler, Q. Ge, Z. Sun, and G. M. Bokoch (2004)
J. Biol. Chem. 279, 1922-1931
   Abstract »    Full Text »    PDF »
Membranous Expression of Secreted Frizzled-Related Protein 4 Predicts for Good Prognosis in Localized Prostate Cancer and Inhibits PC3 Cellular Proliferation in Vitro.
L. G. Horvath, S. M. Henshall, J. G. Kench, D. N. Saunders, C.-S. Lee, D. Golovsky, P. C. Brenner, G. F. O'Neill, R. Kooner, P. D. Stricker, et al. (2004)
Clin. Cancer Res. 10, 615-625
   Abstract »    Full Text »    PDF »
Identification of Genetic Pathways Activated by the Androgen Receptor during the Induction of Proliferation in the Ventral Prostate Gland.
P. V. Nantermet, J. Xu, Y. Yu, P. Hodor, D. Holder, S. Adamski, M. A. Gentile, D. B. Kimmel, S.-i. Harada, D. Gerhold, et al. (2004)
J. Biol. Chem. 279, 1310-1322
   Abstract »    Full Text »    PDF »
Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/{beta}-catenin synergy.
B. K. Jordan, J. H.- C. Shen, R. Olaso, H. A. Ingraham, and E. Vilain (2003)
PNAS 100, 10866-10871
   Abstract »    Full Text »    PDF »
WNT7a induces E-cadherin in lung cancer cells.
T. Ohira, R. M. Gemmill, K. Ferguson, S. Kusy, J. Roche, E. Brambilla, C. Zeng, A. Baron, L. Bemis, P. Erickson, et al. (2003)
PNAS 100, 10429-10434
   Abstract »    Full Text »    PDF »
The Group 3 LIM Domain Protein Paxillin Potentiates Androgen Receptor Transactivation in Prostate Cancer Cell Lines.
M. Kasai, J. Guerrero-Santoro, R. Friedman, E. S. Leman, R. H. Getzenberg, and D. B. DeFranco (2003)
Cancer Res. 63, 4927-4935
   Abstract »    Full Text »    PDF »
A Direct {beta}-Catenin-independent Interaction between Androgen Receptor and T Cell Factor 4.
A. L. Amir, M. Barua, N. C. McKnight, S. Cheng, X. Yuan, and S. P. Balk (2003)
J. Biol. Chem. 278, 30828-30834
   Abstract »    Full Text »    PDF »
The Cyclooxygenase 2-specific Nonsteroidal Anti-inflammatory Drugs Celecoxib and Nimesulide Inhibit Androgen Receptor Activity via Induction of c-Jun in Prostate Cancer Cells.
Y. Pan, J.-S. Zhang, M. H. Gazi, and C. Y. F. Young (2003)
Cancer Epidemiol. Biomarkers Prev. 12, 769-774
   Abstract »    Full Text »    PDF »
T-Cell Factor 4N (TCF-4N), a Novel Isoform of Mouse TCF-4, Synergizes with {beta}-Catenin To Coactivate C/EBP{alpha} and Steroidogenic Factor 1 Transcription Factors.
J. A. Kennell, E. E. O'Leary, B. M. Gummow, G. D. Hammer, and O. A. MacDougald (2003)
Mol. Cell. Biol. 23, 5366-5375
   Abstract »    Full Text »    PDF »
Convergence of Wnt Signaling and Steroidogenic Factor-1 (SF-1) on Transcription of the Rat Inhibin {alpha} Gene.
B. M. Gummow, J. N. Winnay, and G. D. Hammer (2003)
J. Biol. Chem. 278, 26572-26579
   Abstract »    Full Text »    PDF »
{beta}-Catenin-related Anomalies in Apoptosis-resistant and Hormone-refractory Prostate Cancer Cells.
A. de la Taille, M. A. Rubin, M.-W. Chen, F. Vacherot, S. G.-D. de Medina, M. Burchardt, R. Buttyan, and D. Chopin (2003)
Clin. Cancer Res. 9, 1801-1807
   Abstract »    Full Text »    PDF »
{beta}-Catenin Binds to the Activation Function 2 Region of the Androgen Receptor and Modulates the Effects of the N-Terminal Domain and TIF2 on Ligand-Dependent Transcription.
L.-N. Song, R. Herrell, S. Byers, S. Shah, E. M. Wilson, and E. P. Gelmann (2003)
Mol. Cell. Biol. 23, 1674-1687
   Abstract »    Full Text »    PDF »
Identification of the LIM Protein FHL2 as a Coactivator of {beta}-Catenin.
Y. Wei, C.-A. Renard, C. Labalette, Y. Wu, L. Levy, C. Neuveut, X. Prieur, M. Flajolet, S. Prigent, and M.-A. Buendia (2003)
J. Biol. Chem. 278, 5188-5194
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-Kinase/Akt Stimulates Androgen Pathway through GSK3beta Inhibition and Nuclear beta -Catenin Accumulation.
M. Sharma, W. W. Chuang, and Z. Sun (2002)
J. Biol. Chem. 277, 30935-30941
   Abstract »    Full Text »    PDF »
Liganded Androgen Receptor Interaction with {beta}-Catenin: NUCLEAR CO-LOCALIZATION AND MODULATION OF TRANSCRIPTIONAL ACTIVITY IN NEURONAL CELLS.
J. E. Pawlowski, J. R. Ertel, M. P. Allen, M. Xu, C. Butler, E. M. Wilson, and M. E. Wierman (2002)
J. Biol. Chem. 277, 20702-20710
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882