Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 277 (2): 1031-1039

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Tyrosine Phosphorylation Mapping of the Epidermal Growth Factor Receptor Signaling Pathway*

Hanno SteenDagger , Bernhard Kuster§, Minerva FernandezDagger , Akhilesh PandeyDagger ||, and Matthias MannDagger §**

From the Dagger  Protein Interaction Laboratory, Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M and § MDS Proteomics A/S, Staermosegaardsvej 6, 5230 Odense M, Denmark

Phosphorylation is one of the most common forms of protein modification. The most frequent targets for protein phosphorylation in eukaryotes are serine and threonine residues, although tyrosine residues also undergo phosphorylation. Many of the currently applied methods for the detection and localization of protein phosphorylation sites are mass spectrometry-based and are biased against the analysis of tyrosine-phosphorylated residues because of the stability and low reactivity of phosphotyrosines. To overcome this lack of sensitive methods for the detection of phosphotyrosine-containing peptides, we have recently developed a method that is not affected by the more predominant threonine or serine phosphorylation within cells. It is based on the specific detection of immonium ion of phosphotyrosine at 216.043 Da and does not require prior knowledge of the protein sequence. In this report, we describe the first application of this new method in a proteomic strategy. Using anti-phosphotyrosine antibodies for immunoprecipitation and one-dimensional gel electrophoresis, we have identified 10 proteins in the epidermal growth factor receptor signaling pathway, of which 8 have been shown previously to be involved in epidermal growth factor signaling. Most importantly, in addition to several known tyrosine phosphorylation sites, we have identified five novel sites on SHIP-2, Hrs, Cbl, STAM, and STAM2, most of which were not predicted to be phosphorylated. Because of its sensitivity and selectivity, this approach will be useful in proteomic approaches to study tyrosine phosphorylation in a number of signal transduction pathways.


* This work was supported in part by a grant from the Danish National Research Foundation to the Center for Experimental Bioinformatics.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Current address: Cellzome GmbH, 69117 Heidelberg, Germany.

|| Supported by a Howard Temin award (Grant CA 75447) from the NCI, National Institutes of Health and by a travel award from the Plasmid Foundation, Denmark. To whom correspondence may be addressed. Tel.: 45-65502366; Fax: 45-65933018; E-mail: pandey@cebi. sdu.dk.

** To whom correspondence may be addressed. Tel.: 45-65502364; Fax: 45-65933929; E-mail: mann@bmb.sdu.dk.


Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
CTEN Prolongs Signaling by EGFR through Reducing Its Ligand-Induced Degradation.
S.-Y. Hong, Y.-P. Shih, T. Li, K. L. Carraway III, and S. H. Lo (2013)
Cancer Res. 73, 5266-5276
   Abstract »    Full Text »    PDF »
Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes.
J. Morvan, B. Rinaldi, and S. Friant (2012)
Mol. Biol. Cell 23, 4054-4064
   Abstract »    Full Text »    PDF »
Targeting Peptide Termini, a Novel Immunoaffinity Approach to Reduce Complexity in Mass Spectrometric Protein Identification.
S. Hoeppe, T. D. Schreiber, H. Planatscher, A. Zell, M. F. Templin, D. Stoll, T. O. Joos, and O. Poetz (2011)
Mol. Cell. Proteomics 10, M110.002857
   Abstract »    Full Text »    PDF »
Understanding protein phosphorylation on a systems level.
J. Lin, Z. Xie, H. Zhu, and J. Qian (2010)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
In-depth Qualitative and Quantitative Profiling of Tyrosine Phosphorylation Using a Combination of Phosphopeptide Immunoaffinity Purification and Stable Isotope Dimethyl Labeling.
P. J. Boersema, L. Y. Foong, V. M. Y. Ding, S. Lemeer, B. van Breukelen, R. Philp, J. Boekhorst, B. Snel, J. den Hertog, A. B. H. Choo, et al. (2010)
Mol. Cell. Proteomics 9, 84-99
   Abstract »    Full Text »    PDF »
Cbl Controls EGFR Fate by Regulating Early Endosome Fusion.
G. D. Visser Smit, T. L. Place, S. L. Cole, K. A. Clausen, S. Vemuganti, G. Zhang, J. G. Koland, and N. L. Lill (2009)
Science Signaling 2, ra86
   Abstract »    Full Text »    PDF »
Multiple myeloma phosphotyrosine proteomic profile associated with FGFR3 expression, ligand activation, and drug inhibition.
J. R. St-Germain, P. Taylor, J. Tong, L. L. Jin, A. Nikolic, I. I. Stewart, R. M. Ewing, M. Dharsee, Z. Li, S. Trudel, et al. (2009)
PNAS 106, 20127-20132
   Abstract »    Full Text »    PDF »
A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour.
L. B. van Alphen, M. Wuhrer, N. M. C. Bleumink-Pluym, P. J. Hensbergen, A. M. Deelder, and J. P. M. van Putten (2008)
Microbiology 154, 3385-3397
   Abstract »    Full Text »    PDF »
Potassium Channel Phosphorylation in Excitable Cells: Providing Dynamic Functional Variability to a Diverse Family of Ion Channels.
K.-S. Park, J.-W. Yang, E. Seikel, and J. S. Trimmer (2008)
Physiology 23, 49-57
   Abstract »    Full Text »    PDF »
Highly Efficient Phosphopeptide Enrichment by Calcium Phosphate Precipitation Combined with Subsequent IMAC Enrichment.
X. Zhang, J. Ye, O. N. Jensen, and P. Roepstorff (2007)
Mol. Cell. Proteomics 6, 2032-2042
   Abstract »    Full Text »    PDF »
Phosphopeptide Enrichment by Aliphatic Hydroxy Acid-modified Metal Oxide Chromatography for Nano-LC-MS/MS in Proteomics Applications.
N. Sugiyama, T. Masuda, K. Shinoda, A. Nakamura, M. Tomita, and Y. Ishihama (2007)
Mol. Cell. Proteomics 6, 1103-1109
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Receptor Fate Is Controlled by Hrs Tyrosine Phosphorylation Sites That Regulate Hrs Degradation.
K. A. Stern, G. D. Visser Smit, T. L. Place, S. Winistorfer, R. C. Piper, and N. L. Lill (2007)
Mol. Cell. Biol. 27, 888-898
   Abstract »    Full Text »    PDF »
Mass spectrometry technologies for proteomics.
B. Canas, D. Lopez-Ferrer, A. Ramos-Fernandez, E. Camafeita, and E. Calvo (2006)
Briefings in Functional Genomics 4, 295-320
   Abstract »    Full Text »    PDF »
Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules.
Y. Zhang, A. Wolf-Yadlin, P. L. Ross, D. J. Pappin, J. Rush, D. A. Lauffenburger, and F. M. White (2005)
Mol. Cell. Proteomics 4, 1240-1250
   Abstract »    Full Text »    PDF »
Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1.
C. Yu, M. Alterman, and R. T. Dobrowsky (2005)
J. Lipid Res. 46, 1678-1691
   Abstract »    Full Text »    PDF »
Phosphotyrosine Signaling Networks in Epidermal Growth Factor Receptor Overexpressing Squamous Carcinoma Cells.
A. Thelemann, F. Petti, G. Griffin, K. Iwata, T. Hunt, T. Settinari, D. Fenyo, N. Gibson, and J. D. Haley (2005)
Mol. Cell. Proteomics 4, 356-376
   Abstract »    Full Text »    PDF »
The Hrs/STAM Complex in the Downregulation of Receptor Tyrosine Kinases.
M. Komada and N. Kitamura (2005)
J. Biochem. 137, 1-8
   Abstract »    Full Text »    PDF »
SHIP2 Is Recruited to the Cell Membrane upon Macrophage Colony-Stimulating Factor (M-CSF) Stimulation and Regulates M-CSF-Induced Signaling.
Y. Wang, R. J. Keogh, M. G. Hunter, C. A. Mitchell, R. S. Frey, K. Javaid, A. B. Malik, S. Schurmans, S. Tridandapani, and C. B. Marsh (2004)
J. Immunol. 173, 6820-6830
   Abstract »    Full Text »    PDF »
Autophosphorylation of JAK2 on Tyrosines 221 and 570 Regulates Its Activity.
L. S. Argetsinger, J.-L. K. Kouadio, H. Steen, A. Stensballe, O. N. Jensen, and C. Carter-Su (2004)
Mol. Cell. Biol. 24, 4955-4967
   Abstract »    Full Text »    PDF »
A Novel Proteomic Approach for Specific Identification of Tyrosine Kinase Substrates Using [13C]Tyrosine.
N. Ibarrola, H. Molina, A. Iwahori, and A. Pandey (2004)
J. Biol. Chem. 279, 15805-15813
   Abstract »    Full Text »    PDF »
Large-scale Analysis of in Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry.
T. S. Nuhse, A. Stensballe, O. N. Jensen, and S. C. Peck (2003)
Mol. Cell. Proteomics 2, 1234-1243
   Abstract »    Full Text »    PDF »
The UIM domain of Hrs couples receptor sorting to vesicle formation.
S. Urbe, M. Sachse, P. E. Row, C. Preisinger, F. A. Barr, G. Strous, J. Klumperman, and M. J. Clague (2003)
J. Cell Sci. 116, 4169-4179
   Abstract »    Full Text »    PDF »
CRP: Cleavage of Radiolabeled Phosphoproteins.
A. J. Mackey, T. A.J. Haystead, and W. R. Pearson (2003)
Nucleic Acids Res. 31, 3859-3861
   Abstract »    Full Text »    PDF »
Profiling the Global Tyrosine Phosphorylation State.
K. Machida, B. J. Mayer, and P. Nollau (2003)
Mol. Cell. Proteomics 2, 215-233
   Abstract »    Full Text »    PDF »
Phosphotyrosine Mapping in Bcr/Abl Oncoprotein Using Phosphotyrosine-specific Immonium Ion Scanning.
H. Steen, M. Fernandez, S. Ghaffari, A. Pandey, and M. Mann (2003)
Mol. Cell. Proteomics 2, 138-145
   Abstract »    Full Text »    PDF »
Identification of Protein Components in Human Acquired Enamel Pellicle and Whole Saliva Using Novel Proteomics Approaches.
Y. Yao, E. A. Berg, C. E. Costello, R. F. Troxler, and F. G. Oppenheim (2003)
J. Biol. Chem. 278, 5300-5308
   Abstract »    Full Text »    PDF »
Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry.
A. R. Salomon, S. B. Ficarro, L. M. Brill, A. Brinker, Q. T. Phung, C. Ericson, K. Sauer, A. Brock, D. M. Horn, P. G. Schultz, et al. (2003)
PNAS 100, 443-448
   Abstract »    Full Text »    PDF »
Analysis of Tyrosine Phosphorylation Sites in Signaling Molecules by a Phosphotyrosine-Specific Immonium Ion Scanning Method.
H. Steen, A. Pandey, J. S. Andersen, and M. Mann (2002)
Sci. STKE 2002, pl16
   Abstract »    Full Text »    PDF »
A Mass Spectrometry-based Proteomic Approach for Identification of Serine/Threonine-phosphorylated Proteins by Enrichment with Phospho-specific Antibodies: Identification of a Novel Protein, Frigg, as a Protein Kinase A Substrate.
M. Gronborg, T. Z. Kristiansen, A. Stensballe, J. S. Andersen, O. Ohara, M. Mann, O. N. Jensen, and A. Pandey (2002)
Mol. Cell. Proteomics 1, 517-527
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Protein Phosphorylations in Heat Shock Response and Thermotolerance.
H.-J. Kim, E. J. Song, and K.-J. Lee (2002)
J. Biol. Chem. 277, 23193-23207
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882