Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Biol. Chem. 277 (20): 17933-17943

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

The Androgen Receptor Can Promote beta -Catenin Nuclear Translocation Independently of Adenomatous Polyposis Coli*

David J. MulhollandDagger , Helen Cheng, Kim Reid, Paul S. Rennie, and Colleen C. Nelson

From the Prostate Research Centre, 2660 Oak St., Jack Bell Research, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada

We provide evidence that the androgen receptor (AR) can promote nuclear translocation of beta -catenin in LNCaP and PC3 prostate cancer cells. Using AR-expressing cells (LNCaP) and non-AR-expressing cells (PC3) we showed by time course cell fractionation that the AR can shuttle beta -catenin into the nucleus when exposed to exogenous androgen. Cells exposed to the synthetic androgen, R1881, show distinct, punctate, nuclear co-localization of the AR and beta -catenin. We further showed that the AR does not interact with adenomatous polyposis coli or glycogen synthase kinase-3beta and, therefore, conclude that androgen-mediated transport of beta -catenin occurs through a distinct pathway. The minimal necessary components of the AR and beta -catenin required for binding nuclear accumulation of beta -catenin nuclear import appears to be the DNA/ligand binding regions and the Armadillo repeats of beta -catenin. We also employed a novel DNA binding assay to illustrate that beta -catenin has the capacity to bind to the probasin promoter in an AR-dependent manner. The physiological relevance of AR-mediated transport of beta -catenin and binding to an AR promoter appeared to be a substantial increase in AR transcriptional reporter activity. AR-mediated import represents a novel mode of nuclear accumulation of beta -catenin.


* The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Dagger To whom correspondence should be addressed: Tel.: 604-875-5555 (ext. 61473); Fax: 604-875-5654; E-mail: djm@interchange.ubc.ca.


Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Constitutive {beta}-Catenin Activation Induces Male-Specific Tumorigenesis in the Bladder Urothelium.
C. Lin, Y. Yin, K. Stemler, P. Humphrey, A. S. Kibel, I. U. Mysorekar, and L. Ma (2013)
Cancer Res. 73, 5914-5925
   Abstract »    Full Text »    PDF »
Androgen activates {beta}-catenin signaling in bladder cancer cells.
Y. Li, Y. Zheng, K. Izumi, H. Ishiguro, B. Ye, F. Li, and H. Miyamoto (2013)
Endocr. Relat. Cancer 20, 293-304
   Abstract »    Full Text »    PDF »
Role of WNT7B-induced Noncanonical Pathway in Advanced Prostate Cancer.
D. Zheng, K. F. Decker, T. Zhou, J. Chen, Z. Qi, K. Jacobs, K. N. Weilbaecher, E. Corey, F. Long, and L. Jia (2013)
Mol. Cancer Res. 11, 482-493
   Abstract »    Full Text »    PDF »
Oncogenic Wnt/{beta}-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research.
K. Wang, N. Li, C. H. Yeung, J. Y. Li, H. Y. Wang, and T. G. Cooper (2013)
Mol. Hum. Reprod. 19, 57-71
   Abstract »    Full Text »    PDF »
TCF/LEFs and Wnt Signaling in the Nucleus.
K. M. Cadigan and M. L. Waterman (2012)
Cold Spring Harb Perspect Biol 4, a007906
   Abstract »    Full Text »    PDF »
Coordinated Action of Hypoxia-inducible Factor-1{alpha} and {beta}-Catenin in Androgen Receptor Signaling.
T. Mitani, N. Harada, Y. Nakano, H. Inui, and R. Yamaji (2012)
J. Biol. Chem. 287, 33594-33606
   Abstract »    Full Text »    PDF »
Modulation of Wnt/{beta}-catenin signaling pathway by bioactive food components.
R. S. Tarapore, I. A. Siddiqui, and H. Mukhtar (2012)
Carcinogenesis 33, 483-491
   Abstract »    Full Text »    PDF »
Androgen-Sensitive Microsomal Signaling Networks Coupled to the Proliferation and Differentiation of Human Prostate Cancer Cells.
H. D. Martinez, J. J. Hsiao, R. J. Jasavala, I. V. Hinkson, J. K. Eng, and M. E. Wright (2011)
Genes & Cancer 2, 956-978
   Abstract »    Full Text »    PDF »
Aberrant expression of a {beta}-catenin gain-of-function mutant induces hyperplastic transformation in the mouse cornea.
Y. Zhang, M. K. Call, L.-K. Yeh, H. Liu, T. Kochel, I.-J. Wang, P.-H. Chu, M. M. Taketo, J. V. Jester, W. W.- Y. Kao, et al. (2010)
J. Cell Sci. 123, 1285-1294
   Abstract »    Full Text »    PDF »
Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells.
M.-L. Zhu and N. Kyprianou (2010)
FASEB J 24, 769-777
   Abstract »    Full Text »    PDF »
ASK-ing EMT not to spread cancer.
N. Kyprianou (2010)
PNAS 107, 2731-2732
   Full Text »    PDF »
DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo.
M. Cole, J. Chandler, D. Weijers, B. Jacobs, P. Comelli, and W. Werr (2009)
Development 136, 1643-1651
   Abstract »    Full Text »    PDF »
Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.
X. Liu, J. D. Allen, J. T. Arnold, and M. R. Blackman (2008)
Carcinogenesis 29, 816-823
   Abstract »    Full Text »    PDF »
Androgen Receptor Regulation of the Versican Gene through an Androgen Response Element in the Proximal Promoter.
J. T. Read, M. Rahmani, S. Boroomand, S. Allahverdian, B. M. McManus, and P. S. Rennie (2007)
J. Biol. Chem. 282, 31954-31963
   Abstract »    Full Text »    PDF »
Proteomics Analysis of the Interactome of N-myc Downstream Regulated Gene 1 and Its Interactions with the Androgen Response Program in Prostate Cancer Cells.
L. C. Tu, X. Yan, L. Hood, and B. Lin (2007)
Mol. Cell. Proteomics 6, 575-588
   Abstract »    Full Text »    PDF »
The Glucocorticoid Receptor Represses Cyclin D1 by Targeting the Tcf-beta-Catenin Complex.
S. Takayama, I. Rogatsky, L. E. Schwarcz, and B. D. Darimont (2006)
J. Biol. Chem. 281, 17856-17863
   Abstract »    Full Text »    PDF »
Activation of {beta}-Catenin Signaling in Prostate Cancer by Peptidyl-Prolyl Isomerase Pin1-Mediated Abrogation of the Androgen Receptor-{beta}-Catenin Interaction.
S.-Y. Chen, G. Wulf, X. Z. Zhou, M. A. Rubin, K. P. Lu, and S. P. Balk (2006)
Mol. Cell. Biol. 26, 929-939
   Abstract »    Full Text »    PDF »
Associations between ER{alpha}, ER{beta}, and AR Genotypes and Colon and Rectal Cancer.
M. L. Slattery, C. Sweeney, M. Murtaugh, K. N. Ma, R. K. Wolff, J. D. Potter, B. J. Caan, and W. Samowitz (2005)
Cancer Epidemiol. Biomarkers Prev. 14, 2936-2942
   Abstract »    Full Text »    PDF »
Interaction of {beta}-Catenin and TIF2/GRIP1 in Transcriptional Activation by the Androgen Receptor.
L.-N. Song and E. P. Gelmann (2005)
J. Biol. Chem. 280, 37853-37867
   Abstract »    Full Text »    PDF »
Wnt3a Growth Factor Induces Androgen Receptor-Mediated Transcription and Enhances Cell Growth in Human Prostate Cancer Cells.
M. Verras, J. Brown, X. Li, R. Nusse, and Z. Sun (2004)
Cancer Res. 64, 8860-8866
   Abstract »    Full Text »    PDF »
Analysis of Wnt Gene Expression in Prostate Cancer: Mutual Inhibition by WNT11 and the Androgen Receptor.
H. Zhu, M. Mazor, Y. Kawano, M. M. Walker, H. Y. Leung, K. Armstrong, J. Waxman, and R. M. Kypta (2004)
Cancer Res. 64, 7918-7926
   Abstract »    Full Text »    PDF »
Regulating the Balance between Peroxisome Proliferator-activated Receptor {gamma} and {beta}-Catenin Signaling during Adipogenesis: A GLYCOGEN SYNTHASE KINASE 3{beta} PHOSPHORYLATION-DEFECTIVE MUTANT OF {beta}-CATENIN INHIBITS EXPRESSION OF A SUBSET OF ADIPOGENIC GENES.
J. Liu and S. R. Farmer (2004)
J. Biol. Chem. 279, 45020-45027
   Abstract »    Full Text »    PDF »
Antiapoptotic Protein Partners Fortilin and MCL1 Independently Protect Cells from 5-Fluorouracil-induced Cytotoxicity.
P. Graidist, A. Phongdara, and K. Fujise (2004)
J. Biol. Chem. 279, 40868-40875
   Abstract »    Full Text »    PDF »
The Human Frizzled 6 (HFz6) Acts as a Negative Regulator of the Canonical Wnt{middle dot}{beta}-Catenin Signaling Cascade.
T. Golan, A. Yaniv, A. Bafico, G. Liu, and A. Gazit (2004)
J. Biol. Chem. 279, 14879-14888
   Abstract »    Full Text »    PDF »
Identification of Aryl Hydrocarbon Receptor as a Putative Wnt/{beta}-Catenin Pathway Target Gene in Prostate Cancer Cells.
D. R. Chesire, T. A. Dunn, C. M. Ewing, J. Luo, and W. B. Isaacs (2004)
Cancer Res. 64, 2523-2533
   Abstract »    Full Text »    PDF »
Androgen Receptor Coregulators in Prostate Cancer: Mechanisms and Clinical Implications.
M. Rahman, H. Miyamoto, and C. Chang (2004)
Clin. Cancer Res. 10, 2208-2219
   Full Text »    PDF »
Synergistic Effects of Coactivators GRIP1 and {beta}-Catenin on Gene Activation: CROSS-TALK BETWEEN ANDROGEN RECEPTOR AND Wnt SIGNALING PATHWAYS.
H. Li, J. H. Kim, S. S. Koh, and M. R. Stallcup (2004)
J. Biol. Chem. 279, 4212-4220
   Abstract »    Full Text »    PDF »
A Direct {beta}-Catenin-independent Interaction between Androgen Receptor and T Cell Factor 4.
A. L. Amir, M. Barua, N. C. McKnight, S. Cheng, X. Yuan, and S. P. Balk (2003)
J. Biol. Chem. 278, 30828-30834
   Abstract »    Full Text »    PDF »
Convergence of Wnt Signaling and Steroidogenic Factor-1 (SF-1) on Transcription of the Rat Inhibin {alpha} Gene.
B. M. Gummow, J. N. Winnay, and G. D. Hammer (2003)
J. Biol. Chem. 278, 26572-26579
   Abstract »    Full Text »    PDF »
{beta}-Catenin-related Anomalies in Apoptosis-resistant and Hormone-refractory Prostate Cancer Cells.
A. de la Taille, M. A. Rubin, M.-W. Chen, F. Vacherot, S. G.-D. de Medina, M. Burchardt, R. Buttyan, and D. Chopin (2003)
Clin. Cancer Res. 9, 1801-1807
   Abstract »    Full Text »    PDF »
Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions.
C. J. Loy, K. S. Sim, and E. L. Yong (2003)
PNAS 100, 4562-4567
   Abstract »    Full Text »    PDF »
{beta}-Catenin Binds to the Activation Function 2 Region of the Androgen Receptor and Modulates the Effects of the N-Terminal Domain and TIF2 on Ligand-Dependent Transcription.
L.-N. Song, R. Herrell, S. Byers, S. Shah, E. M. Wilson, and E. P. Gelmann (2003)
Mol. Cell. Biol. 23, 1674-1687
   Abstract »    Full Text »    PDF »
Liganded Androgen Receptor Interaction with {beta}-Catenin: NUCLEAR CO-LOCALIZATION AND MODULATION OF TRANSCRIPTIONAL ACTIVITY IN NEURONAL CELLS.
J. E. Pawlowski, J. R. Ertel, M. P. Allen, M. Xu, C. Butler, E. M. Wilson, and M. E. Wierman (2002)
J. Biol. Chem. 277, 20702-20710
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882