Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Biol. Chem. 277 (5): 3195-3201

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Sprouty2 Inhibits the Ras/MAP Kinase Pathway by Inhibiting the Activation of Raf*

Permeen Yusoff, Dieu-Hung Lao, Siew Hwa OngDagger , Esther Sook Miin Wong, Jormay Lim, Ting Ling Lo, Hwei Fen Leong, Chee Wai Fong, and Graeme R. Guy§

From the Signal Transduction Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609, Singapore

Several genetic studies in Drosophila have shown that the dSprouty (dSpry) protein inhibits the Ras/mitogen-activated protein (MAP) kinase pathway induced by various activated receptor tyrosine kinase receptors, most notably those of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR). Currently, the mode of action of dSpry is unknown, and the point of inhibition remains controversial. There are at least four mammalian Spry isoforms that have been shown to co-express preferentially with FGFRs as compared with EGFRs. In this study, we investigated the effects of the various mammalian Spry isoforms on the Ras/MAP kinase pathway in cells overexpressing constitutively active FGFR1. hSpry2 was significantly more potent than mSpry1 or mSpry4 in inhibiting the Ras/MAP kinase pathway. Additional experiments indicated that full-length hSpry2 was required for its full potency. hSpry2 had no inhibitory effect on either the JNK or the p38 pathway and displayed no inhibition of FRS2 phosphorylation, Akt activation, and Ras activation. Constitutively active mutants of Ras, Raf, and Mek were employed to locate the prospective point of inhibition of hSpry2 downstream of activated Ras. Results from this study indicated that hSpry2 exerted its inhibitory effect at the level of Raf, which was verified in a Raf activation assay in an FGF signaling context.

* This work was supported by funding from the National Science and Technology Board of Singapore.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Dagger Present address: Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Ontario, M5G 1X5, Toronto, Canada.

§ To whom correspondence should be addressed: Signal Transduction Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Dr., Singapore 117609. Tel.: 65-874-3737; Fax: 65-779-1117; E-mail:

Copyright © 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells.
A. M. Walsh and M. J. Lazzara (2013)
J. Cell Sci. 126, 4339-4348
   Abstract »    Full Text »    PDF »
MicroRNA Control of Vascular Endothelial Growth Factor Signaling Output During Vascular Development.
L. T. H. Dang, N. D. Lawson, and J. E. Fish (2013)
Arterioscler Thromb Vasc Biol 33, 193-200
   Abstract »    Full Text »    PDF »
Structure of a novel phosphotyrosine-binding domain in Hakai that targets E-cadherin.
M. Mukherjee, S. Y. Chow, P. Yusoff, J. Seetharaman, C. Ng, S. Sinniah, X. W. Koh, N. F. M. Asgar, D. Li, D. Yim, et al. (2012)
EMBO J. 31, 1308-1319
   Abstract »    Full Text »    PDF »
Role of Two Adaptor Molecules SLP-76 and LAT in the PI3K Signaling Pathway in Activated T Cells.
E. K. Shim, S. H. Jung, and J. R. Lee (2011)
J. Immunol. 186, 2926-2935
   Abstract »    Full Text »    PDF »
Hindbrain patterning requires fine-tuning of early krox20 transcription by Sprouty 4.
C. Labalette, Y. X. Bouchoucha, M. A. Wassef, P. A. Gongal, J. Le Men, T. Becker, P. Gilardi-Hebenstreit, and P. Charnay (2011)
Development 138, 317-326
   Abstract »    Full Text »    PDF »
ErbB2 Stabilizes Epidermal Growth Factor Receptor (EGFR) Expression via Erk and Sprouty2 in Extracellular Matrix-detached Cells.
A. R. Grassian, Z. T. Schafer, and J. S. Brugge (2011)
J. Biol. Chem. 286, 79-90
   Abstract »    Full Text »    PDF »
Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells.
H. Chen, T. Kluz, R. Zhang, and M. Costa (2010)
Carcinogenesis 31, 2136-2144
   Abstract »    Full Text »    PDF »
Direct Association of Sprouty-related Protein with an EVH1 Domain (SPRED) 1 or SPRED2 with DYRK1A Modifies Substrate/Kinase Interactions.
D. Li, R. A. Jackson, P. Yusoff, and G. R. Guy (2010)
J. Biol. Chem. 285, 35374-35385
   Abstract »    Full Text »    PDF »
Recruitment of Sprouty1 to Immune Synapse Regulates T Cell Receptor Signaling.
J. S. Lee, J. E. Lee, Y. M. Oh, J. B. Park, H. Choi, C. Y. Choi, I.-H. Kim, S. H. Lee, and K. Choi (2009)
J. Immunol. 183, 7178-7186
   Abstract »    Full Text »    PDF »
Intermolecular Interactions of Sprouty Proteins and Their Implications in Development and Disease.
F. Edwin, K. Anderson, C. Ying, and T. B. Patel (2009)
Mol. Pharmacol. 76, 679-691
   Abstract »    Full Text »    PDF »
Sprouty2 Association with B-Raf Is Regulated by Phosphorylation and Kinase Conformation.
S. C. Brady, M. L. Coleman, J. Munro, S. M. Feller, N. A. Morrice, and M. F. Olson (2009)
Cancer Res. 69, 6773-6781
   Abstract »    Full Text »    PDF »
Sprouty2 Interacts with Protein Kinase C{delta} and Disrupts Phosphorylation of Protein Kinase D1.
S. Y. Chow, C. Y. Yu, and G. R. Guy (2009)
J. Biol. Chem. 284, 19623-19636
   Abstract »    Full Text »    PDF »
Loss of Sprouty1 Rescues Renal Agenesis Caused by Ret Mutation.
E. J. Rozen, H. Schmidt, X. Dolcet, M. A. Basson, S. Jain, and M. Encinas (2009)
J. Am. Soc. Nephrol. 20, 255-259
   Abstract »    Full Text »    PDF »
Sprouty2-Mediated Inhibition of Fibroblast Growth Factor Signaling Is Modulated by the Protein Kinase DYRK1A.
S. Aranda, M. Alvarez, S. Turro, A. Laguna, and S. de la Luna (2008)
Mol. Cell. Biol. 28, 5899-5911
   Abstract »    Full Text »    PDF »
BRAF V600E Disrupts AZD6244-Induced Abrogation of Negative Feedback Pathways between Extracellular Signal-Regulated Kinase and Raf Proteins.
B. B. Friday, C. Yu, G. K. Dy, P. D. Smith, L. Wang, S. N. Thibodeau, and A. A. Adjei (2008)
Cancer Res. 68, 6145-6153
   Abstract »    Full Text »    PDF »
Genome-wide Scan Finds Suggestive Caries Loci.
A.R. Vieira, M.L. Marazita, and T. Goldstein-McHenry (2008)
Journal of Dental Research 87, 435-439
   Abstract »    Full Text »    PDF »
Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates.
C. Ng, R. A. Jackson, J. P. Buschdorf, Q. Sun, G. R. Guy, and J. Sivaraman (2008)
EMBO J. 27, 804-816
   Abstract »    Full Text »    PDF »
Tesk1 Interacts with Spry2 to Abrogate Its Inhibition of ERK Phosphorylation Downstream of Receptor Tyrosine Kinase Signaling.
S. Chandramouli, C. Y. Yu, P. Yusoff, D.-H. Lao, H. F. Leong, K. Mizuno, and G. R. Guy (2008)
J. Biol. Chem. 283, 1679-1691
   Abstract »    Full Text »    PDF »
Direct Binding of PP2A to Sprouty2 and Phosphorylation Changes Are a Prerequisite for ERK Inhibition Downstream of Fibroblast Growth Factor Receptor Stimulation.
D.-H. Lao, P. Yusoff, S. Chandramouli, R. J. Philp, C. W. Fong, R. A. Jackson, T. Y. Saw, C. Y. Yu, and G. R. Guy (2007)
J. Biol. Chem. 282, 9117-9126
   Abstract »    Full Text »    PDF »
Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis.
A. T. Shaw, A. Meissner, J. A. Dowdle, D. Crowley, M. Magendantz, C. Ouyang, T. Parisi, J. Rajagopal, L. J. Blank, R. T. Bronson, et al. (2007)
Genes & Dev. 21, 694-707
   Abstract »    Full Text »    PDF »
A Src Homology 3-binding Sequence on the C Terminus of Sprouty2 Is Necessary for Inhibition of the Ras/ERK Pathway Downstream of Fibroblast Growth Factor Receptor Stimulation.
D.-H. Lao, S. Chandramouli, P. Yusoff, C. W. Fong, T. Y. Saw, L. P. Tai, C. Y. Yu, H. F. Leong, and G. R. Guy (2006)
J. Biol. Chem. 281, 29993-30000
   Abstract »    Full Text »    PDF »
A Functional Interaction between Sprouty Proteins and Caveolin-1.
M. A. Cabrita, F. Jaggi, S. P. Widjaja, and G. Christofori (2006)
J. Biol. Chem. 281, 29201-2912
   Abstract »    Full Text »    PDF »
Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma..
S Fritzsche, M Kenzelmann, M J Hoffmann, M Muller, R Engers, H-J Grone, and W A Schulz (2006)
Endocr. Relat. Cancer 13, 839-849
   Abstract »    Full Text »    PDF »
Dual Effects of Sprouty1 on TCR Signaling Depending on the Differentiation State of the T Cell.
H. Choi, S.-Y. Cho, R. H. Schwartz, and K. Choi (2006)
J. Immunol. 176, 6034-6045
   Abstract »    Full Text »    PDF »
Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation.
J. DaSilva, L. Xu, H. J. Kim, W. T. Miller, and D. Bar-Sagi (2006)
Mol. Cell. Biol. 26, 1898-1907
   Abstract »    Full Text »    PDF »
Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3'-diindolylmethane.
X. Chang, G. L. Firestone, and L. F. Bjeldanes (2006)
Carcinogenesis 27, 541-550
   Abstract »    Full Text »    PDF »
The Tumor Suppressor PTEN Is Necessary for Human Sprouty 2-mediated Inhibition of Cell Proliferation.
F. Edwin, R. Singh, R. Endersby, S. J. Baker, and T. B. Patel (2006)
J. Biol. Chem. 281, 4816-4822
   Abstract »    Full Text »    PDF »
Sprouty 2, an Inhibitor of Mitogen-Activated Protein Kinase Signaling, Is Down-Regulated in Hepatocellular Carcinoma.
C. W. Fong, M.-S. Chua, A. B. McKie, S. H. M. Ling, V. Mason, R. Li, P. Yusoff, T. L. Lo, H. Y. Leung, S. K.S. So, et al. (2006)
Cancer Res. 66, 2048-2058
   Abstract »    Full Text »    PDF »
Identification of Potential Human Oncogenes by Mapping the Common Viral Integration Sites in Avian Nephroblastoma.
P. Pajer, V. Pecenka, J. Kralova, V. Karafiat, D. Prukova, Z. Zemanova, R. Kodet, and M. Dvorak (2006)
Cancer Res. 66, 78-86
   Abstract »    Full Text »    PDF »
Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms.
K.-i. Ozaki, S. Miyazaki, S. Tanimura, and M. Kohno (2005)
J. Cell Sci. 118, 5861-5871
   Abstract »    Full Text »    PDF »
Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines.
S. Bloethner, B. Chen, K. Hemminki, J. Muller-Berghaus, S. Ugurel, D. Schadendorf, and R. Kumar (2005)
Carcinogenesis 26, 1224-1232
   Abstract »    Full Text »    PDF »
Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite.
T. G. Smith, D. Sweetman, M. Patterson, S. M. Keyse, and A. Munsterberg (2005)
Development 132, 1305-1314
   Abstract »    Full Text »    PDF »
Phosphorylation of Carboxyl-terminal Tyrosines Modulates the Specificity of Sprouty-2 Inhibition of Different Signaling Pathways.
C. Rubin, Y. Zwang, N. Vaisman, D. Ron, and Y. Yarden (2005)
J. Biol. Chem. 280, 9735-9744
   Abstract »    Full Text »    PDF »
FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity.
X. Li, V. G. Brunton, H. R. Burgar, L. M. Wheldon, and J. K. Heath (2004)
J. Cell Sci. 117, 6007-6017
   Abstract »    Full Text »    PDF »
Regulatory Mechanisms and Function of ERK MAP Kinases.
S. Torii, K. Nakayama, T. Yamamoto, and E. Nishida (2004)
J. Biochem. 136, 557-561
   Abstract »    Full Text »    PDF »
DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection.
S. Matsuzaki, M. Canis, C. Vaurs-Barriere, J.L. Pouly, O. Boespflug-Tanguy, F. Penault-Llorca, P. Dechelotte, B. Dastugue, K. Okamura, and G. Mage (2004)
Mol. Hum. Reprod. 10, 719-728
   Abstract »    Full Text »    PDF »
The Ras/Mitogen-Activated Protein Kinase Pathway Inhibitor and Likely Tumor Suppressor Proteins, Sprouty 1 and Sprouty 2 Are Deregulated in Breast Cancer.
T. L. Lo, P. Yusoff, C. W. Fong, K. Guo, B. J. McCaw, W. A. Phillips, H. Yang, E. S. M. Wong, H. F. Leong, Q. Zeng, et al. (2004)
Cancer Res. 64, 6127-6136
   Abstract »    Full Text »    PDF »
The Expression of Sprouty1, an Inhibitor of Fibroblast Growth Factor Signal Transduction, Is Decreased in Human Prostate Cancer.
B. Kwabi-Addo, J. Wang, H. Erdem, A. Vaid, P. Castro, G. Ayala, and M. Ittmann (2004)
Cancer Res. 64, 4728-4735
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse.
Y. Ohkubo, A. O. Uchida, D. Shin, J. Partanen, and F. M. Vaccarino (2004)
J. Neurosci. 24, 6057-6069
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Sprouty Proteins Regulates Their Ability to Inhibit Growth Factor Signaling: A Dual Feedback Loop.
J. M. Mason, D. J. Morrison, B. Bassit, M. Dimri, H. Band, J. D. Licht, and I. Gross (2004)
Mol. Biol. Cell 15, 2176-2188
   Abstract »    Full Text »    PDF »
Promotion and Attenuation of FGF Signaling Through the Ras-MAPK Pathway.
M. Tsang and I. B. Dawid (2004)
Sci. STKE 2004, pe17
   Abstract »    Full Text »    PDF »
Spred-2 Suppresses Aorta-Gonad-Mesonephros Hematopoiesis by Inhibiting MAP Kinase Activation.
I. Nobuhisa, R. Kato, H. Inoue, M. Takizawa, K. Okita, A. Yoshimura, and T. Taga (2004)
J. Exp. Med. 199, 737-742
   Abstract »    Full Text »    PDF »
hSef Inhibits PC-12 Cell Differentiation by Interfering with Ras-Mitogen-activated Protein Kinase MAPK Signaling.
S. Xiong, Q. Zhao, Z. Rong, G. Huang, Y. Huang, P. Chen, S. Zhang, L. Liu, and Z. Chang (2003)
J. Biol. Chem. 278, 50273-50282
   Abstract »    Full Text »    PDF »
The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development.
I. Gross, D. J. Morrison, D. P. Hyink, K. Georgas, M. A. English, M. Mericskay, S. Hosono, D. Sassoon, P. D. Wilson, M. Little, et al. (2003)
J. Biol. Chem. 278, 41420-41430
   Abstract »    Full Text »    PDF »
Activated EGL-15 FGF receptor promotes protein degradation in muscles of Caenorhabditis elegans.
N. J. Szewczyk and L. A. Jacobson (2003)
EMBO J. 22, 5058-5067
   Abstract »    Full Text »    PDF »
Sprouty: how does the branch manager work?.
G. R. Guy, E. S. M. Wong, P. Yusoff, S. Chandramouli, T. L. Lo, J. Lim, and C. W. Fong (2003)
J. Cell Sci. 116, 3061-3068
   Abstract »    Full Text »    PDF »
Sef Inhibits Fibroblast Growth Factor Signaling by Inhibiting FGFR1 Tyrosine Phosphorylation and Subsequent ERK Activation.
D. Kovalenko, X. Yang, R. J. Nadeau, L. K. Harkins, and R. Friesel (2003)
J. Biol. Chem. 278, 14087-14091
   Abstract »    Full Text »    PDF »
Protein-tyrosine Phosphatase-1B (PTP1B) Mediates the Anti-migratory Actions of Sprouty.
Y. Yigzaw, H. M. Poppleton, N. Sreejayan, A. Hassid, and T. B. Patel (2003)
J. Biol. Chem. 278, 284-288
   Abstract »    Full Text »    PDF »
The Cysteine-Rich Sprouty Translocation Domain Targets Mitogen-Activated Protein Kinase Inhibitory Proteins to Phosphatidylinositol 4,5-Bisphosphate in Plasma Membranes.
J. Lim, P. Yusoff, E. S. M. Wong, S. Chandramouli, D.-H. Lao, C. W. Fong, and G. R. Guy (2002)
Mol. Cell. Biol. 22, 7953-7966
   Abstract »    Full Text »    PDF »
Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling.
E. S. M. Wong, C. W. Fong, J. Lim, P. Yusoff, B. C. Low, W. Y. Langdon, and G. R. Guy (2002)
EMBO J. 21, 4796-4808
   Abstract »    Full Text »    PDF »
SNT1/FRS2 Mediates Germinal Vesicle Breakdown Induced by an Activated FGF Receptor1 in Xenopus Oocytes.
K. Mood, R. Friesel, and I. O. Daar (2002)
J. Biol. Chem. 277, 33196-33204
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882