Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 148 (5): 997-1008

Copyright © 2000 by the Rockefeller University Press.

Original Article

Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells

A. Prallea, P. Kellera, E.-L. Florina, K. Simonsa, , and J.K.H. Hörbera

a Cell Biology and Biophysics, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.49-6221-38730649-6221-387569


Abstract: To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam ≤ 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 ± 13 nm in size diffusing as one entity for minutes.

Key Words: laser trap • lipid raft • protein diffusion • single particle tracking • thermal position fluctuation analysis

Abbreviations used in this paper: DIG, detergent insoluble glycolipid-enriched complex; GFP, green fluorescent protein; GPI, glycosylphosphatidylinositol; HA, influenza virus hemagglutinin; LFPGT46, artificial transmembrane YFP; PLAP, placental alkaline phosphatase; SPT, single particle tracking; TfR, transferrin receptor; TPF, two-photon fluorescence; YFP, yellow color variant of green fluorescent protein; YFPGLGPI, artificial GPI-anchored YFP.

Bile Acids Modulate Signaling by Functional Perturbation of Plasma Membrane Domains.
Y. Zhou, K. N. Maxwell, E. Sezgin, M. Lu, H. Liang, J. F. Hancock, E. J. Dial, L. M. Lichtenberger, and I. Levental (2013)
J. Biol. Chem. 288, 35660-35670
   Abstract »    Full Text »    PDF »
Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains.
H. B. Bhat, T. Kishimoto, M. Abe, A. Makino, T. Inaba, M. Murate, N. Dohmae, A. Kurahashi, K. Nishibori, F. Fujimori, et al. (2013)
J. Lipid Res. 54, 2933-2943
   Abstract »    Full Text »    PDF »
CD317/tetherin is an organiser of membrane microdomains.
P. G. Billcliff, R. Rollason, I. Prior, D. M. Owen, K. Gaus, and G. Banting (2013)
J. Cell Sci. 126, 1553-1564
   Abstract »    Full Text »    PDF »
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
S. Meinhardt, R. L. C. Vink, and F. Schmid (2013)
PNAS 110, 4476-4481
   Abstract »    Full Text »    PDF »
Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts.
J. F. Frisz, K. Lou, H. A. Klitzing, W. P. Hanafin, V. Lizunov, R. L. Wilson, K. J. Carpenter, R. Kim, I. D. Hutcheon, J. Zimmerberg, et al. (2013)
PNAS 110, E613-E622
   Abstract »    Full Text »    PDF »
A critical survey of methods to detect plasma membrane rafts.
E. Klotzsch and G. J. Schutz (2012)
Phil Trans R Soc B 368, 20120033
   Abstract »    Full Text »    PDF »
Raft domains of variable properties and compositions in plasma membrane vesicles.
I. Levental, M. Grzybek, and K. Simons (2011)
PNAS 108, 11411-11416
   Abstract »    Full Text »    PDF »
Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking.
A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf (2011)
PNAS 108, 6438-6443
   Abstract »    Full Text »    PDF »
Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis.
C. Marquer, V. Devauges, J.-C. Cossec, G. Liot, S. Lecart, F. Saudou, C. Duyckaerts, S. Leveque-Fort, and M.-C. Potier (2011)
FASEB J 25, 1295-1305
   Abstract »    Full Text »    PDF »
Distinct MHC Class II Molecules Are Associated on the Dendritic Cell Surface in Cholesterol-dependent Membrane Microdomains.
S. Khandelwal and P. A. Roche (2010)
J. Biol. Chem. 285, 35303-35310
   Abstract »    Full Text »    PDF »
HIV-1 Nef Binds a Subpopulation of MHC-I throughout Its Trafficking Itinerary and Down-regulates MHC-I by Perturbing Both Anterograde and Retrograde Trafficking.
L. Yi, T. Rosales, J. J. Rose, B. Chaudhury, J. R. Knutson, and S. Venkatesan (2010)
J. Biol. Chem. 285, 30884-30905
   Abstract »    Full Text »    PDF »
Lipid microdomains and the regulation of ion channel function.
C. Dart (2010)
J. Physiol. 588, 3169-3178
   Abstract »    Full Text »    PDF »
Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KII{alpha} at the trans-Golgi network.
S. Minogue, K. M. E. Chu, E. J. Westover, D. F. Covey, J. J. Hsuan, and M. G. Waugh (2010)
J. Lipid Res. 51, 2314-2324
   Abstract »    Full Text »    PDF »
Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation.
A. Togayachi, Y. Kozono, Y. Ikehara, H. Ito, N. Suzuki, Y. Tsunoda, S. Abe, T. Sato, K. Nakamura, M. Suzuki, et al. (2010)
PNAS 107, 11900-11905
   Abstract »    Full Text »    PDF »
Lipid Rafts As a Membrane-Organizing Principle.
D. Lingwood and K. Simons (2010)
Science 327, 46-50
   Abstract »    Full Text »    PDF »
Order of lipid phases in model and plasma membranes.
H.-J. Kaiser, D. Lingwood, I. Levental, J. L. Sampaio, L. Kalvodova, L. Rajendran, and K. Simons (2009)
PNAS 106, 16645-16650
   Abstract »    Full Text »    PDF »
Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation.
T. Yeung, B. Heit, J.-F. Dubuisson, G. D. Fairn, B. Chiu, R. Inman, A. Kapus, M. Swanson, and S. Grinstein (2009)
J. Cell Biol. 185, 917-928
   Abstract »    Full Text »    PDF »
Characterization and subcellular localization of a bacterial flotillin homologue.
C. Donovan and M. Bramkamp (2009)
Microbiology 155, 1786-1799
   Abstract »    Full Text »    PDF »
Detection of Lipid Domains in Model and Cell Membranes by Fluorescence Lifetime Imaging Microscopy of Fluorescent Lipid Analogues.
M. Stockl, A. P. Plazzo, T. Korte, and A. Herrmann (2008)
J. Biol. Chem. 283, 30828-30837
   Abstract »    Full Text »    PDF »
Duck Hepatitis B Virus Requires Cholesterol for Endosomal Escape during Virus Entry.
A. Funk, M. Mhamdi, H. Hohenberg, J. Heeren, R. Reimer, C. Lambert, R. Prange, and H. Sirma (2008)
J. Virol. 82, 10532-10542
   Abstract »    Full Text »    PDF »
FM Dyes Label Sterol-Rich Plasma Membrane Domains and are Internalized Independently of the Cytoskeleton in Characean Internodal Cells.
A. Klima and I. Foissner (2008)
Plant Cell Physiol. 49, 1508-1521
   Abstract »    Full Text »    PDF »
Reduced Display of Tumor Necrosis Factor Receptor I at the Host Cell Surface Supports Infection with Chlamydia trachomatis.
N. Paland, L. Bohme, R. K. Gurumurthy, A. Maurer, A. J. Szczepek, and T. Rudel (2008)
J. Biol. Chem. 283, 6438-6448
   Abstract »    Full Text »    PDF »
Cholesterol-Rich Membrane Rafts and Lyn Are Involved in Phagocytosis during Pseudomonas aeruginosa Infection.
S. Kannan, A. Audet, H. Huang, L.-j. Chen, and M. Wu (2008)
J. Immunol. 180, 2396-2408
   Abstract »    Full Text »    PDF »
Single-molecule biophysics: at the interface of biology, physics and chemistry.
A. A Deniz, S. Mukhopadhyay, and E. A Lemke (2008)
J R Soc Interface 5, 15-45
   Abstract »    Full Text »    PDF »
Clustering of Membrane Raft Proteins by the Actin Cytoskeleton.
G. R. Chichili and W. Rodgers (2007)
J. Biol. Chem. 282, 36682-36691
   Abstract »    Full Text »    PDF »
Plasma membrane domain organization regulates EGFR signaling in tumor cells.
P. Lajoie, E. A. Partridge, G. Guay, J. G. Goetz, J. Pawling, A. Lagana, B. Joshi, J. W. Dennis, and I. R. Nabi (2007)
J. Cell Biol. 179, 341-356
   Abstract »    Full Text »    PDF »
Cyclodextrins Inhibit Replication of Scrapie Prion Protein in Cell Culture.
M. Prior, S. Lehmann, M.-S. Sy, B. Molloy, and H. E. M. McMahon (2007)
J. Virol. 81, 11195-11207
   Abstract »    Full Text »    PDF »
Molecular determinants of endothelial transcytosis and their role in endothelial permeability.
S. A. Predescu, D. N. Predescu, and A. B. Malik (2007)
Am J Physiol Lung Cell Mol Physiol 293, L823-L842
   Abstract »    Full Text »    PDF »
H-Ras Does Not Need COP I- or COP II-dependent Vesicular Transport to Reach the Plasma Membrane.
H. Zheng, J. McKay, and J. E. Buss (2007)
J. Biol. Chem. 282, 25760-25768
   Abstract »    Full Text »    PDF »
Modelling and simulation techniques for membrane biology.
K. Burrage, J. Hancock, A. Leier, and D. V. Nicolau Jr (2007)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Interaction of high density lipoprotein particles with membranes containing cholesterol.
S. A. Sanchez, M. A. Tricerri, and E. Gratton (2007)
J. Lipid Res. 48, 1689-1700
   Abstract »    Full Text »    PDF »
Gangliosides GM1 and GM3 in the Living Cell Membrane Form Clusters Susceptible to Cholesterol Depletion and Chilling.
A. Fujita, J. Cheng, M. Hirakawa, K. Furukawa, S. Kusunoki, and T. Fujimoto (2007)
Mol. Biol. Cell 18, 2112-2122
   Abstract »    Full Text »    PDF »
Single-molecule microscopy reveals heterogeneous dynamics of lipid raft components upon TCR engagement.
K. Drbal, M. Moertelmaier, C. Holzhauser, A. Muhammad, E. Fuertbauer, S. Howorka, M. Hinterberger, H. Stockinger, and G. J. Schutz (2007)
Int. Immunol. 19, 675-684
   Abstract »    Full Text »    PDF »
Quantitative Proteomics Analysis of Human Endothelial Cell Membrane Rafts: Evidence of MARCKS and MRP Regulation in the Sphingosine 1-Phosphate-induced Barrier Enhancement.
Y. Guo, P. A. Singleton, A. Rowshan, M. Gucek, R. N. Cole, D. R. M. Graham, J. E. Van Eyk, and J. G. N. Garcia (2007)
Mol. Cell. Proteomics 6, 689-696
   Abstract »    Full Text »    PDF »
Heterogeneity of Raft-Type Membrane Microdomains Associated with VP4, the Rotavirus Spike Protein, in Caco-2 and MA 104 Cells.
O. Delmas, M. Breton, C. Sapin, A. Le Bivic, O. Colard, and G. Trugnan (2007)
J. Virol. 81, 1610-1618
   Abstract »    Full Text »    PDF »
Gangliosides as components of lipid membrane domains.
S. Sonnino, L. Mauri, V. Chigorno, and A. Prinetti (2007)
Glycobiology 17, 1R-13R
   Abstract »    Full Text »    PDF »
Plasma Membrane Sterol Distribution Resembles the Surface Topography of Living Cells.
D. Wustner (2007)
Mol. Biol. Cell 18, 211-228
   Abstract »    Full Text »    PDF »
Specific inhibition of GPI-anchored protein function by homing and self-association of specific GPI anchors.
T. B. Nicholson and C. P. Stanners (2006)
J. Cell Biol. 175, 647-659
   Abstract »    Full Text »    PDF »
Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes.
F. Stetzkowski-Marden, K. Gaus, M. Recouvreur, A. Cartaud, and J. Cartaud (2006)
J. Lipid Res. 47, 2121-2133
   Abstract »    Full Text »    PDF »
Dynamics in the plasma membrane: how to combine fluidity and order.
D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He (2006)
EMBO J. 25, 3446-3457
   Abstract »    Full Text »    PDF »
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
P.-F. Lenne, L. Wawrezinieck, F. Conchonaud, O. Wurtz, A. Boned, X.-J. Guo, H. Rigneault, H.-T. He, and D. Marguet (2006)
EMBO J. 25, 3245-3256
   Abstract »    Full Text »    PDF »
Antibodies in the small intestine: mucosal synthesis and deposition of anti-glycosyl IgA, IgM, and IgG in the enterocyte brush border.
G. H. Hansen, L.-L. Niels-Christiansen, L. Immerdal, and E. M. Danielsen (2006)
Am J Physiol Gastrointest Liver Physiol 291, G82-G90
   Abstract »    Full Text »    PDF »
Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae.
G. Grossmann, M. Opekarova, L. Novakova, J. Stolz, and W. Tanner (2006)
Eukaryot. Cell 5, 945-953
   Abstract »    Full Text »    PDF »
Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1 K+ Channel at the Plasma Membrane.
J.-U. Sutter, P. Campanoni, M. Tyrrell, and M. R. Blatt (2006)
PLANT CELL 18, 935-954
   Abstract »    Full Text »    PDF »
The Association of Shiga-like Toxin with Detergent-resistant Membranes Is Modulated by Glucosylceramide and Is an Essential Requirement in the Endoplasmic Reticulum for a Cytotoxic Effect.
D. C. Smith, D. J. Sillence, T. Falguieres, R. M. Jarvis, L. Johannes, J. M. Lord, F. M. Platt, and L. M. Roberts (2006)
Mol. Biol. Cell 17, 1375-1387
   Abstract »    Full Text »    PDF »
Lateral mobility of proteins in liquid membranes revisited.
Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M. Genest, R. S. Hodges, and W. Urbach (2006)
PNAS 103, 2098-2102
   Abstract »    Full Text »    PDF »
Localization of the Lipopolysaccharide-binding Protein in Phospholipid Membranes by Atomic Force Microscopy.
S. Roes, F. Mumm, U. Seydel, and T. Gutsmann (2006)
J. Biol. Chem. 281, 2757-2763
   Abstract »    Full Text »    PDF »
Palmitoylations on Murine Coronavirus Spike Proteins Are Essential for Virion Assembly and Infectivity.
E. B. Thorp, J. A. Boscarino, H. L. Logan, J. T. Goletz, and T. M. Gallagher (2006)
J. Virol. 80, 1280-1289
   Abstract »    Full Text »    PDF »
Phase coexistence and connectivity in the apical membrane of polarized epithelial cells.
D. Meder, M. J. Moreno, P. Verkade, W. L. C. Vaz, and K. Simons (2006)
PNAS 103, 329-334
   Abstract »    Full Text »    PDF »
Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane.
D. V. Nicolau Jr., K. Burrage, R. G. Parton, and J. F. Hancock (2006)
Mol. Cell. Biol. 26, 313-323
   Abstract »    Full Text »    PDF »
Membrane Cholesterol: a Crucial Molecule Affecting Interactions of Microbial Pathogens with Mammalian Cells.
P. Goluszko and B. Nowicki (2005)
Infect. Immun. 73, 7791-7796
   Full Text »    PDF »
Gametes Alter the Oviductal Secretory Proteome.
A. S. Georgiou, E. Sostaric, C. H. Wong, A. P. L. Snijders, P. C. Wright, H. D. Moore, and A. Fazeli (2005)
Mol. Cell. Proteomics 4, 1785-1796
   Abstract »    Full Text »    PDF »
H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton.
S. J. Plowman, C. Muncke, R. G. Parton, and J. F. Hancock (2005)
PNAS 102, 15500-15505
   Abstract »    Full Text »    PDF »
The leading edge is a lipid diffusion barrier.
I. Weisswange, T. Bretschneider, and K. I. Anderson (2005)
J. Cell Sci. 118, 4375-4380
   Abstract »    Full Text »    PDF »
Alteration of Fatty Acid and Sterol Metabolism in Miltefosine-Resistant Leishmania donovani Promastigotes and Consequences for Drug-Membrane Interactions.
M. Rakotomanga, M. Saint-Pierre-Chazalet, and P. M. Loiseau (2005)
Antimicrob. Agents Chemother. 49, 2677-2686
   Abstract »    Full Text »    PDF »
Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells.
S. Y. Breusegem, N. Halaihel, M. Inoue, H. Zajicek, E. Lederer, N. P. Barry, V. Sorribas, and M. Levi (2005)
Am J Physiol Renal Physiol 289, F154-F165
   Abstract »    Full Text »    PDF »
Relationships between EGFR Signaling-competent and Endocytosis-competent Membrane Microdomains.
C. Puri, D. Tosoni, R. Comai, A. Rabellino, D. Segat, F. Caneva, P. Luzzi, P. P. Di Fiore, and C. Tacchetti (2005)
Mol. Biol. Cell 16, 2704-2718
   Abstract »    Full Text »    PDF »
Palmitoylation and Intracellular Domain Interactions Both Contribute to Raft Targeting of Linker for Activation of T Cells.
H. Shogomori, A. T. Hammond, A. G. Ostermeyer-Fay, D. J. Barr, G. W. Feigenson, E. London, and D. A. Brown (2005)
J. Biol. Chem. 280, 18931-18942
   Abstract »    Full Text »    PDF »
A simplified method for the preparation of detergent-free lipid rafts.
J. L. Macdonald and L. J. Pike (2005)
J. Lipid Res. 46, 1061-1067
   Abstract »    Full Text »    PDF »
Lipid rafts and membrane dynamics.
L. Rajendran and K. Simons (2005)
J. Cell Sci. 118, 1099-1102
   Full Text »    PDF »
Localization of Src Homology 2 Domain-Containing Phosphatase 1 (SHP-1) to Lipid Rafts in T Lymphocytes: Functional Implications and a Role for the SHP-1 Carboxyl Terminus.
V. C. J. Fawcett and U. Lorenz (2005)
J. Immunol. 174, 2849-2859
   Abstract »    Full Text »    PDF »
Invited review: The dynamics of LPS recognition: complex orchestration of multiple receptors.
M. Triantafilou and K. Triantafilou (2005)
Innate Immunity 11, 5-11
   Abstract »    PDF »
Analysis of Detergent-Resistant Membranes in Arabidopsis. Evidence for Plasma Membrane Lipid Rafts.
G. H.H. Borner, D. J. Sherrier, T. Weimar, L. V. Michaelson, N. D. Hawkins, A. MacAskill, J. A. Napier, M. H. Beale, K. S. Lilley, and P. Dupree (2005)
Plant Physiology 137, 104-116
   Abstract »    Full Text »    PDF »
Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane.
S. Schuck and K. Simons (2004)
J. Cell Sci. 117, 5955-5964
   Abstract »    Full Text »    PDF »
Enlargeosome, an Exocytic Vesicle Resistant to Nonionic Detergents, Undergoes Endocytosis via a Nonacidic Route.
E. Cocucci, G. Racchetti, P. Podini, M. Rupnik, and J. Meldolesi (2004)
Mol. Biol. Cell 15, 5356-5368
   Abstract »    Full Text »    PDF »
Partitioning of NaPi Cotransporter in Cholesterol-, Sphingomyelin-, and Glycosphingolipid-enriched Membrane Domains Modulates NaPi Protein Diffusion, Clustering, and Activity.
M. Inoue, M. A. Digman, M. Cheng, S. Y. Breusegem, N. Halaihel, V. Sorribas, W. W. Mantulin, E. Gratton, N. P. Barry, and M. Levi (2004)
J. Biol. Chem. 279, 49160-49171
   Abstract »    Full Text »    PDF »
Dynamic Confinement of NK2 Receptors in the Plasma Membrane: IMPROVED FRAP ANALYSIS AND BIOLOGICAL RELEVANCE.
L. Cezanne, S. Lecat, B. Lagane, C. Millot, J.-Y. Vollmer, H. Matthes, J.-L. Galzi, and A. Lopez (2004)
J. Biol. Chem. 279, 45057-45067
   Abstract »    Full Text »    PDF »
MHC Class II Molecules Traffic into Lipid Rafts during Intracellular Transport.
N. J. Poloso, A. Muntasell, and P. A. Roche (2004)
J. Immunol. 173, 4539-4546
   Abstract »    Full Text »    PDF »
NrCAM Coupling to the Cytoskeleton Depends on Multiple Protein Domains and Partitioning into Lipid Rafts.
J. Falk, O. Thoumine, C. Dequidt, D. Choquet, and C. Faivre-Sarrailh (2004)
Mol. Biol. Cell 15, 4695-4709
   Abstract »    Full Text »    PDF »
Three Separable Domains Regulate GTP-Dependent Association of H-ras with the Plasma Membrane.
B. Rotblat, I. A. Prior, C. Muncke, R. G. Parton, Y. Kloog, Y. I. Henis, and J. F. Hancock (2004)
Mol. Cell. Biol. 24, 6799-6810
   Abstract »    Full Text »    PDF »
Cholesterol Efflux Alters Lipid Raft Stability and Distribution During Capacitation of Boar Spermatozoa.
S. Shadan, P. S. James, E. A. Howes, and R. Jones (2004)
Biol Reprod 71, 253-265
   Abstract »    Full Text »    PDF »
Dynamics of putative raft-associated proteins at the cell surface.
A. K. Kenworthy, B. J. Nichols, C. L. Remmert, G. M. Hendrix, M. Kumar, J. Zimmerberg, and J. Lippincott-Schwartz (2004)
J. Cell Biol. 165, 735-746
   Abstract »    Full Text »    PDF »
Markers for Detergent-resistant Lipid Rafts Occupy Distinct and Dynamic Domains in Native Membranes.
B. S. Wilson, S. L. Steinberg, K. Liederman, J. R. Pfeiffer, Z. Surviladze, J. Zhang, L. E. Samelson, L.-h. Yang, P. G. Kotula, and J. M. Oliver (2004)
Mol. Biol. Cell 15, 2580-2592
   Abstract »    Full Text »    PDF »
Gene delivery by dendrimers operates via a cholesterol dependent pathway.
M. Manunta, P. H. Tan, P. Sagoo, K. Kashefi, and A. J. T. George (2004)
Nucleic Acids Res. 32, 2730-2739
   Abstract »    Full Text »    PDF »
Dual Mechanisms for Shedding of the Cellular Prion Protein.
E. T. Parkin, N. T. Watt, A. J. Turner, and N. M. Hooper (2004)
J. Biol. Chem. 279, 11170-11178
   Abstract »    Full Text »    PDF »
Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis.
C. Gomez-Mouton, R. A. Lacalle, E. Mira, S. Jimenez-Baranda, D. F. Barber, A. C. Carrera, C. Martinez-A., and S. Manes (2004)
J. Cell Biol. 164, 759-768
   Abstract »    Full Text »    PDF »
The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly.
F. Vilhardt and B. van Deurs (2004)
EMBO J. 23, 739-748
   Abstract »    Full Text »    PDF »
Differential Recruitment of Kv1.4 and Kv4.2 to Lipid Rafts by PSD-95.
W. Wong and L. C. Schlichter (2004)
J. Biol. Chem. 279, 444-452
   Abstract »    Full Text »    PDF »
Smooth muscle raft-like membranes.
C. B. Baron and R. F. Coburn (2004)
J. Lipid Res. 45, 41-53
   Abstract »    Full Text »    PDF »
Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
K. Gaus, E. Gratton, E. P. W. Kable, A. S. Jones, I. Gelissen, L. Kritharides, and W. Jessup (2003)
PNAS 100, 15554-15559
   Abstract »    Full Text »    PDF »
Role of the Cytoplasmic Domain of the Newcastle Disease Virus Fusion Protein in Association with Lipid Rafts.
V. Dolganiuc, L. McGinnes, E. J. Luna, and T. G. Morrison (2003)
J. Virol. 77, 12968-12979
   Abstract »    Full Text »    PDF »
Lipid raft-associated protein sorting in exosomes.
A. de Gassart, C. Geminard, B. Fevrier, G. Raposo, and M. Vidal (2003)
Blood 102, 4336-4344
   Abstract »    Full Text »    PDF »
CD38 Signaling in T Cells Is Initiated within a Subset of Membrane Rafts Containing Lck and the CD3-{zeta} Subunit of the T Cell Antigen Receptor.
P. Munoz, M.-d.-C. Navarro, E. J. Pavon, J. Salmeron, F. Malavasi, J. Sancho, and M. Zubiaur (2003)
J. Biol. Chem. 278, 50791-50802
   Abstract »    Full Text »    PDF »
Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.
M. Takeda, G. P. Leser, C. J. Russell, and R. A. Lamb (2003)
PNAS 100, 14610-14617
   Abstract »    Full Text »    PDF »
Caveosomes and endocytosis of lipid rafts.
B. Nichols (2003)
J. Cell Sci. 116, 4707-4714
   Abstract »    Full Text »    PDF »
Self-Association and Raft Localization of Functional Luteinizing Hormone Receptors.
D. A. Roess and S. M.L. Smith (2003)
Biol Reprod 69, 1765-1770
   Abstract »    Full Text »    PDF »
Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts.
D. E. Shvartsman, M. Kotler, R. D. Tall, M. G. Roth, and Y. I. Henis (2003)
J. Cell Biol. 163, 879-888
   Abstract »    Full Text »    PDF »
Atomic Force Microscopy Investigation of Human Immunodeficiency Virus (HIV) and HIV-Infected Lymphocytes.
Y. G. Kuznetsov, J. G. Victoria, W. E. Robinson Jr., and A. McPherson (2003)
J. Virol. 77, 11896-11909
   Abstract »    Full Text »    PDF »
F-actin and Myosin II Binding Domains in Supervillin.
Y. Chen, N. Takizawa, J. L. Crowley, S. W. Oh, C. L. Gatto, T. Kambara, O. Sato, X.-d. Li, M. Ikebe, and E. J. Luna (2003)
J. Biol. Chem. 278, 46094-46106
   Abstract »    Full Text »    PDF »
Scanning Probe Evolution in Biology.
J. K. H. Horber and M. J. Miles (2003)
Science 302, 1002-1005
   Abstract »    Full Text »    PDF »
Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells.
K. Malinska, J. Malinsky, M. Opekarova, and W. Tanner (2003)
Mol. Biol. Cell 14, 4427-4436
   Abstract »    Full Text »    PDF »
Lipid-dependent Recruitment of Neuronal Src to Lipid Rafts in the Brain.
A. Mukherjee, L. Arnaud, and J. A. Cooper (2003)
J. Biol. Chem. 278, 40806-40814
   Abstract »    Full Text »    PDF »
Lipid rafts make for slippery platforms.
E. C. Lai (2003)
J. Cell Biol. 162, 365-370
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882