Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 146 (6): 1375-1389

Copyright © 1999 by the Rockefeller University Press.

Original Article

Function of α3β1–Tetraspanin Protein Complexes in Tumor Cell Invasion. Evidence for the Role of the Complexes in Production of Matrix Metalloproteinase 2 (Mmp-2)

Tsuyoshi Sugiuraa, and Fedor Berditchevskia

a CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, United Kingdom
CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, United Kingdom.44-121-414-448644-121-414-7458


Abstract: Tumor cell migration through the three- dimensional extracellular matrix (ECM) environment is an important part of the metastatic process. We have analyzed a role played by the integrin–tetraspanin protein complexes in invasive migration by culturing MDA-MB-231 cells within Matrigel. Using time-lapse video recording, we demonstrated that the Matrigel-embedded cells remain round and exhibit only limited ability for migration by extending short, highly dynamic pseudopodia. The α3β1–tetraspanin protein complexes were clustered on the thin microvilli-like protrusions extending from both the main cell body and pseudopodia. Ligation of the α3β1–tetraspanin protein complexes with monoclonal antibodies specifically stimulates production of matrix metalloproteinase 2 (MMP-2) and induces formation of long invasive protrusions within Matrigel. Accordingly, treatment with the monoclonal antibodies to various tetraspanin proteins and to the α3 integrin subunit increases invasive potential of the MDA-MB-231 cells in the Matrigel-penetration assay. A specific inhibitor of phosphoinositide 3-kinase (PI3K), LY294002, negated the effect of the monoclonal antibodies on the morphology of the Matrigel-embedded cells and on production of MMP-2. Interestingly, broad-spectrum inhibitors of protein tyrosine kinases (genistein) and protein tyrosine phosphatases (orthovanadate), and actin filament stabilizing compound (jasplakinolide), also block protrusive activity of the Matrigel-embedded cells but have no effect on the production of MMP-2. These results indicate that α3β1–tetraspanin protein complexes may control invasive migration of tumor cells by using at least two PI3K-dependent signaling mechanisms: through rearrangement of the actin cytoskeleton and by modulating the MMP-2 production.

Key Words: integrin • tetraspanin • invasion • matrix metalloproteinase • signaling

1.used in this paper: ECM, extracellular matrix; MMP, matrix metalloproteinase; PI3K, phosphoinositide 3-kinase; PtdIns, phosphatidylinositol; pTyr, phosphotyrosine; SH2, Src homology 2; TIMP, tissue inhibitor of metalloproteinases

Integrin {alpha}3{beta}1 controls mRNA splicing that determines Cox-2 mRNA stability in breast cancer cells.
S. Subbaram, S. P. Lyons, K. B. Svenson, S. L. Hammond, L. G. McCabe, S. V. Chittur, and C. M. DiPersio (2014)
J. Cell Sci. 127, 1179-1189
   Abstract »    Full Text »    PDF »
Integrin {alpha}3{beta}1 Can Function to Promote Spontaneous Metastasis and Lung Colonization of Invasive Breast Carcinoma.
B. Zhou, K. N. Gibson-Corley, M. E. Herndon, Y. Sun, E. Gustafson-Wagner, M. Teoh-Fitzgerald, F. E. Domann, M. D. Henry, and C. S. Stipp (2014)
Mol. Cancer Res. 12, 143-154
   Abstract »    Full Text »    PDF »
Tetraspanin CD151 Stimulates Adhesion-dependent Activation of Ras, Rac, and Cdc42 by Facilitating Molecular Association between {beta}1 Integrins and Small GTPases.
I.-K. Hong, D.-I. Jeoung, K.-S. Ha, Y.-M. Kim, and H. Lee (2012)
J. Biol. Chem. 287, 32027-32039
   Abstract »    Full Text »    PDF »
CD82 gene suppression in endometrial stromal cells leads to increase of the cell invasiveness in the endometriotic milieu.
M.-Q. Li, X.-F. Hou, S.-J. Lv, Y.-H. Meng, X.-Q. Wang, C.-L. Tang, and D.-J. Li (2011)
J. Mol. Endocrinol. 47, 195-208
   Abstract »    Full Text »    PDF »
Diminished metastasis in tetraspanin CD151-knockout mice.
Y. Takeda, Q. Li, A. R. Kazarov, M. Epardaud, K. Elpek, S. J. Turley, and M. E. Hemler (2011)
Blood 118, 464-472
   Abstract »    Full Text »    PDF »
Suppression of Integrin {alpha}3{beta}1 in Breast Cancer Cells Reduces Cyclooxygenase-2 Gene Expression and Inhibits Tumorigenesis, Invasion, and Cross-Talk to Endothelial Cells.
K. Mitchell, K. B. Svenson, W. M. Longmate, K. Gkirtzimanaki, R. Sadej, X. Wang, J. Zhao, A. G. Eliopoulos, F. Berditchevski, and C. M. DiPersio (2010)
Cancer Res. 70, 6359-6367
   Abstract »    Full Text »    PDF »
Antibody library screens using detergent-solubilized mammalian cell lysates as antigen sources.
Y. K. Cho and E. V. Shusta (2010)
Protein Eng. Des. Sel. 23, 567-577
   Abstract »    Full Text »    PDF »
The DSCs-Expressed CD82 Controls the Invasiveness of Trophoblast Cells via Integrinbeta1/MAPK/MAPK3/1 Signaling Pathway in Human First-Trimester Pregnancy.
M. Q. Li, X. F. Hou, J. Shao, C. L. Tang, and D. J. Li (2010)
Biol Reprod 82, 968-979
   Abstract »    Full Text »    PDF »
Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts.
J. L. Johnson, N. Winterwood, K. A. DeMali, and C. S. Stipp (2009)
J. Cell Sci. 122, 2263-2273
   Abstract »    Full Text »    PDF »
Tetraspanins and vascular functions.
F. Zhang, J. Kotha, L. K. Jennings, and X. A. Zhang (2009)
Cardiovasc Res 83, 7-15
   Abstract »    Full Text »    PDF »
CD151 Regulates Tumorigenesis by Modulating the Communication between Tumor Cells and Endothelium.
R. Sadej, H. Romanska, G. Baldwin, K. Gkirtzimanaki, V. Novitskaya, A. D. Filer, Z. Krcova, R. Kusinska, J. Ehrmann, C. D. Buckley, et al. (2009)
Mol. Cancer Res. 7, 787-798
   Abstract »    Full Text »    PDF »
Tetraspanin CD151 Regulates Glycosylation of {alpha}3{beta}1 Integrin.
G. Baldwin, V. Novitskaya, R. Sadej, E. Pochec, A. Litynska, C. Hartmann, J. Williams, L. Ashman, J. A. Eble, and F. Berditchevski (2008)
J. Biol. Chem. 283, 35445-35454
   Abstract »    Full Text »    PDF »
MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells.
M. Yanez-Mo, O. Barreiro, P. Gonzalo, A. Batista, D. Megias, L. Genis, N. Sachs, M. Sala-Valdes, M. A. Alonso, M. C. Montoya, et al. (2008)
Blood 112, 3217-3226
   Abstract »    Full Text »    PDF »
Double Deficiency of Tetraspanins CD9 and CD81 Alters Cell Motility and Protease Production of Macrophages and Causes Chronic Obstructive Pulmonary Disease-like Phenotype in Mice.
Y. Takeda, P. He, I. Tachibana, B. Zhou, K. Miyado, H. Kaneko, M. Suzuki, S. Minami, T. Iwasaki, S. Goya, et al. (2008)
J. Biol. Chem. 283, 26089-26097
   Abstract »    Full Text »    PDF »
The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility.
T. Lekishvili, E. Fromm, M. Mujoomdar, and F. Berditchevski (2008)
J. Cell Sci. 121, 685-694
   Abstract »    Full Text »    PDF »
Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro.
Y. Takeda, A. R. Kazarov, C. E. Butterfield, B. D. Hopkins, L. E. Benjamin, A. Kaipainen, and M. E. Hemler (2007)
Blood 109, 1524-1532
   Abstract »    Full Text »    PDF »
Absence of CD9 Enhances Adhesion-Dependent Morphologic Differentiation, Survival, and Matrix Metalloproteinase-2 Production in Small Cell Lung Cancer Cells.
Y. Saito, I. Tachibana, Y. Takeda, H. Yamane, P. He, M. Suzuki, S. Minami, T. Kijima, M. Yoshida, T. Kumagai, et al. (2006)
Cancer Res. 66, 9557-9565
   Abstract »    Full Text »    PDF »
Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein.
K.-K. Jung, X.-W. Liu, R. Chirco, R. Fridman, and H.-R. C. Kim (2006)
EMBO J. 25, 3934-3942
   Abstract »    Full Text »    PDF »
Tetraspanin CD9 regulates invasion during mouse embryo implantation.
W M Liu, Y J Cao, Y J Yang, J Li, Z Hu, and E-K Duan (2006)
J. Mol. Endocrinol. 36, 121-130
   Abstract »    Full Text »    PDF »
Epithelial-Mesenchymal Transformation during Craniofacial Development.
P. Kang and K. K. H. Svoboda (2005)
Journal of Dental Research 84, 678-690
   Abstract »    Full Text »    PDF »
Regulation of Urokinase Receptor Proteolytic Function by the Tetraspanin CD82.
R. Bass, F. Werner, E. Odintsova, T. Sugiura, F. Berditchevski, and V. Ellis (2005)
J. Biol. Chem. 280, 14811-14818
   Abstract »    Full Text »    PDF »
Down-regulation of CD9 in Human Ovarian Carcinoma Cell Might Contribute to Peritoneal Dissemination: Morphologic Alteration and Reduced Expression of {beta}1 Integrin Subsets.
M. Furuya, H. Kato, N. Nishimura, I. Ishiwata, H. Ikeda, R. Ito, T. Yoshiki, and H. Ishikura (2005)
Cancer Res. 65, 2617-2625
   Abstract »    Full Text »    PDF »
Iterative Microarray and RNA Interference-Based Interrogation of the Src-Induced Invasive Phenotype.
R. B. Irby, R. L. Malek, G. Bloom, J. Tsai, N. Letwin, B. C. Frank, K. Verratti, T. J. Yeatman, and N. H. Lee (2005)
Cancer Res. 65, 1814-1821
   Abstract »    Full Text »    PDF »
Tumor Cell-mediated Induction of the Stromal Factor Stromelysin-3 Requires Heterotypic Cell Contact-dependent Activation of Specific Protein Kinase C Isoforms.
K. Louis, N. Guerineau, O. Fromigue, V. Defamie, A. Collazos, P. Anglard, M. A. Shipp, P. Auberger, D. Joubert, and B. Mari (2005)
J. Biol. Chem. 280, 1272-1283
   Abstract »    Full Text »    PDF »
The association of the tetraspanin D6.1A with the {alpha}6{beta}4 integrin supports cell motility and liver metastasis formation.
M. Herlevsen, D.-S. Schmidt, K. Miyazaki, and M. Zoller (2003)
J. Cell Sci. 116, 4373-4390
   Abstract »    Full Text »    PDF »
Altered fracture repair in the absence of MMP9.
C. Colnot, Z. Thompson, T. Miclau, Z. Werb, and J. A. Helms (2003)
Development 130, 4123-4133
   Abstract »    Full Text »    PDF »
The Tetraspanin CD151 Functions as a Negative Regulator in the Adhesion-dependent Activation of Ras.
S. Sawada, M. Yoshimoto, E. Odintsova, N. A. Hotchin, and F. Berditchevski (2003)
J. Biol. Chem. 278, 26323-26326
   Abstract »    Full Text »    PDF »
Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells.
P. V. Kitsiou, A. K. Tzinia, W. G. Stetler-Stevenson, A. F. Michael, W.-W. Fan, B. Zhou, and E. C. Tsilibary (2003)
Am J Physiol Renal Physiol 284, F671-F679
   Abstract »    Full Text »    PDF »
Pro-collagen I COOH-terminal Trimer Induces Directional Migration and Metalloproteinases in Breast Cancer Cells.
D. Palmieri, S. Poggi, V. Ulivi, G. Casartelli, and P. Manduca (2003)
J. Biol. Chem. 278, 3639-3647
   Abstract »    Full Text »    PDF »
A Functionally Relevant Conformational Epitope on the CD9 Tetraspanin Depends on the Association with Activated beta 1 Integrin.
M. D. Gutierrez-Lopez, S. Ovalle, M. Yanez-Mo, N. Sanchez-Sanchez, E. Rubinstein, N. Olmo, M. A. Lizarbe, F. Sanchez-Madrid, and C. Cabanas (2003)
J. Biol. Chem. 278, 208-218
   Abstract »    Full Text »    PDF »
The Tetraspan Protein Epithelial Membrane Protein-2 Interacts with {beta}1 Integrins and Regulates Adhesion.
M. Wadehra, R. Iyer, L. Goodglick, and J. Braun (2002)
J. Biol. Chem. 277, 41094-41100
   Abstract »    Full Text »    PDF »
c-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors.
N. Anzai, Y. Lee, B.-S. Youn, S. Fukuda, Y.-J. Kim, C. Mantel, M. Akashi, and H. E. Broxmeyer (2002)
Blood 99, 4413-4421
   Abstract »    Full Text »    PDF »
Association of the tetraspanin CD151 with the laminin-binding integrins {alpha}3{beta}1, {alpha}6{beta}1, {alpha}6{beta}4 and {alpha}7{beta}1 in cells in culture and in vivo.
L. M. T. Sterk, C. A. W. Geuijen, J. G. van den Berg, N. Claessen, J. J. Weening, and A. Sonnenberg (2002)
J. Cell Sci. 115, 1161-1173
   Abstract »    Full Text »    PDF »
Identification of Heat Shock Protein 60 as a Molecular Mediator of {alpha}3{beta}1 Integrin Activation.
H. O. Barazi, L. Zhou, N. S. Templeton, H. C. Krutzsch, and D. D. Roberts (2002)
Cancer Res. 62, 1541-1548
   Abstract »    Full Text »    PDF »
Complexes of tetraspanins with integrins: more than meets the eye.
F. Berditchevski (2001)
J. Cell Sci. 114, 4143-4151
   Abstract »    Full Text »    PDF »
Influence of {beta}1 Integrins on Epidermal Squamous Cell Carcinoma Formation in a Transgenic Mouse Model: {{alpha}}3{beta}1, but not {{alpha}}2{beta}1, Suppresses Malignant Conversion.
D. M. Owens and F. M. Watt (2001)
Cancer Res. 61, 5248-5254
   Abstract »    Full Text »    PDF »
Epithelial membrane protein 2, a 4-transmembrane protein that suppresses B-cell lymphoma tumorigenicity.
C.-X. Wang, M. Wadehra, B. C. Fisk, L. Goodglick, and J. Braun (2001)
Blood 97, 3890-3895
   Abstract »    Full Text »    PDF »
Osp/Claudin-11 Forms a Complex with a Novel Member of the Tetraspanin Super Family and {beta}1 Integrin and Regulates Proliferation and Migration of Oligodendrocytes.
S. K. Tiwari-Woodruff, A. G. Buznikov, T. Q. Vu, P. E. Micevych, K. Chen, H. I. Kornblum, and J. M. Bronstein (2001)
J. Cell Biol. 153, 295-306
   Abstract »    Full Text »    PDF »
Evaluation of Prototype Transmembrane 4 Superfamily Protein Complexes and Their Relation to Lipid Rafts.
C. Claas, C. S. Stipp, and M. E. Hemler (2001)
J. Biol. Chem. 276, 7974-7984
   Abstract »    Full Text »    PDF »
Adhesive Mechanisms Regulating Invasion and Metastasis in Oral Cancer.
B. L Ziober, S. S. Silverman Jr, and R. H. Kramer (2001)
Critical Reviews in Oral Biology & Medicine 12, 499-510
   Abstract »    Full Text »    PDF »
Mouse keratinocytes immortalized with large T antigen acquire alpha3beta1 integrin-dependent secretion of MMP-9/gelatinase B.
C. M. DiPersio, M. Shao, L. Di Costanzo, J. A. Kreidberg, and R. O. Hynes (2000)
J. Cell Sci. 113, 2909-2921
   Abstract »    PDF »
The Tetraspan Molecule Cd151, a Novel Constituent of Hemidesmosomes, Associates with the Integrin {alpha}6{beta}4 and May Regulate the Spatial Organization of Hemidesmosomes.
L. M.Th. Sterk, C. A.W. Geuijen, L. C.J.M. Oomen, J. Calafat, H. Janssen, and A. Sonnenberg (2000)
J. Cell Biol. 149, 969-982
   Abstract »    Full Text »    PDF »
Evaluation of prototype TM4SF protein complexes and their relation to lipid rafts.
C. Claas, C. S. Stipp, and M. E. Hemler (2000)
J. Biol. Chem.
   Abstract »
Analysis of the CD151{middle dot}alpha 3beta 1 Integrin and CD151{middle dot}Tetraspanin Interactions by Mutagenesis.
F. Berditchevski, E. Gilbert, M. R. Griffiths, S. Fitter, L. Ashman, and S. J. Jenner (2001)
J. Biol. Chem. 276, 41165-41174
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882