Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 149 (2): 423-430

Copyright © 2000 by the Rockefeller University Press.


Original Article

Suppression of Pyk2 Kinase and Cellular Activities by Fip200

Hiroki Uedaa, Smita Abbia, Chuanhai Zhenga, , and Jun-Lin Guana

a Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
Cancer Biology Laboratories, Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.(607) 253-3708(607) 253-3586

jg19{at}cornell.edu

Abstract: Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic tyrosine kinase implicated to play a role in several intracellular signaling pathways. We report the identification of a novel Pyk2-interacting protein designated FIP200 (FAK family kinase–interacting protein of 200 kD) by using a yeast two-hybrid screen. In vitro binding assays and coimmunoprecipitation confirmed association of FIP200 with Pyk2, and similar assays also showed FIP200 binding to FAK. However, immunofluorescent staining indicated that FIP200 was predominantly localized in the cytoplasm. FIP200 bound to the kinase domain of Pyk2 and inhibited its kinase activity in in vitro kinase assays. FIP200 also inhibited the kinase activity of the Pyk2 isolated from SYF cells (deficient in Src, Yes, and Fyn expression) and the Pyk2 mutant lacking binding site for Src, suggesting that it regulated Pyk2 kinase directly rather than affecting the associated Src family kinases. Consistent with its inhibitory effect in vitro, FIP200 inhibited activation of Pyk2 and Pyk2-induced apoptosis in intact cells, which correlated with its binding to Pyk2. Finally, activation of Pyk2 by several biological stimuli correlated with the dissociation of endogenous FIP200–Pyk2 complex, which provided further support for inhibition of Pyk2 by FIP200 in intact cells. Together, these results suggest that FIP200 functions as an inhibitor of Pyk2 via binding to its kinase domain.

Key Words: phosphorylation • FAK • tyrosine kinase • inhibitor • signal transduction



Abbreviations used in this paper: CT-FIP, COOH-terminal FIP200; FAK, focal adhesion kinase; FIP200, FAK family kinase–interacting protein of 200 kD; GST, glutathione-S-transferase; HA, hemagglutinin; NT-FIP, NH2-terminal FIP200; Pyk2, proline-rich tyrosine kinase 2.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Interaction Between DAP1 and Autophagy in the Context of Human Carcinogenesis.
U. WAZIR, Z. S. KHANZADA, W. G. JIANG, A. K. SHARMA, A. KASEM, and K. MOKBEL (2014)
Anticancer Res 34, 1-8
   Abstract »    Full Text »    PDF »
RB1CC1 Protein Positively Regulates Transforming Growth Factor-{beta} Signaling through the Modulation of Arkadia E3 Ubiquitin Ligase Activity.
D. Koinuma, M. Shinozaki, Y. Nagano, H. Ikushima, K. Horiguchi, K. Goto, T. Chano, M. Saitoh, T. Imamura, K. Miyazono, et al. (2011)
J. Biol. Chem. 286, 32502-32512
   Abstract »    Full Text »    PDF »
Suppression of Autophagy by FIP200 Deletion Impairs DNA Damage Repair and Increases Cell Death upon Treatments with Anticancer Agents.
H. Bae and J.-L. Guan (2011)
Mol. Cancer Res. 9, 1232-1241
   Abstract »    Full Text »    PDF »
Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis.
H. Wei, S. Wei, B. Gan, X. Peng, W. Zou, and J.-L. Guan (2011)
Genes & Dev. 25, 1510-1527
   Abstract »    Full Text »    PDF »
FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells.
F. Liu, J. Y. Lee, H. Wei, O. Tanabe, J. D. Engel, S. J. Morrison, and J.-L. Guan (2010)
Blood 116, 4806-4814
   Abstract »    Full Text »    PDF »
Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment.
P. Kadandale, J. D. Stender, C. K. Glass, and A. A. Kiger (2010)
PNAS 107, 10502-10507
   Abstract »    Full Text »    PDF »
Neural-specific Deletion of FIP200 Leads to Cerebellar Degeneration Caused by Increased Neuronal Death and Axon Degeneration.
C.-C. Liang, C. Wang, X. Peng, B. Gan, and J.-L. Guan (2010)
J. Biol. Chem. 285, 3499-3509
   Abstract »    Full Text »    PDF »
Inactivation of FIP200 Leads to Inflammatory Skin Disorder, but Not Tumorigenesis, in Conditional Knock-out Mouse Models.
H. Wei, B. Gan, X. Wu, and J.-L. Guan (2009)
J. Biol. Chem. 284, 6004-6013
   Abstract »    Full Text »    PDF »
{alpha}- and {gamma}-Protocadherins Negatively Regulate PYK2.
J. Chen, Y. Lu, S. Meng, M.-H. Han, C. Lin, and X. Wang (2009)
J. Biol. Chem. 284, 2880-2890
   Abstract »    Full Text »    PDF »
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells.
T. Hara, A. Takamura, C. Kishi, S.-i. Iemura, T. Natsume, J.-L. Guan, and N. Mizushima (2008)
J. Cell Biol. 181, 497-510
   Abstract »    Full Text »    PDF »
Spatial Interplay between PIASy and FIP200 in the Regulation of Signal Transduction and Transcriptional Activity.
N. Martin, K. Schwamborn, H. Urlaub, B. Gan, J.-L. Guan, and A. Dejean (2008)
Mol. Cell. Biol. 28, 2771-2781
   Abstract »    Full Text »    PDF »
Spatial and Temporal Regulation of Focal Adhesion Kinase Activity in Living Cells.
X. Cai, D. Lietha, D. F. Ceccarelli, A. V. Karginov, Z. Rajfur, K. Jacobson, K. M. Hahn, M. J. Eck, and M. D. Schaller (2008)
Mol. Cell. Biol. 28, 201-214
   Abstract »    Full Text »    PDF »
Calcium-dependent growth regulation of small cell lung cancer cells by neuropeptides.
T. Gudermann and S. Roelle (2006)
Endocr. Relat. Cancer 13, 1069-1084
   Abstract »    Full Text »    PDF »
Role of FIP200 in cardiac and liver development and its regulation of TNF{alpha} and TSC-mTOR signaling pathways.
B. Gan, X. Peng, T. Nagy, A. Alcaraz, H. Gu, and J.-L. Guan (2006)
J. Cell Biol. 175, 121-133
   Abstract »    Full Text »    PDF »
Mechanism of Cell Cycle Regulation by FIP200 in Human Breast Cancer Cells.
Z. K. Melkoumian, X. Peng, B. Gan, X. Wu, and J.-L. Guan (2005)
Cancer Res. 65, 6676-6684
   Abstract »    Full Text »    PDF »
Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control.
B. Gan, Z. K. Melkoumian, X. Wu, K.-L. Guan, and J.-L. Guan (2005)
J. Cell Biol. 170, 379-389
   Abstract »    Full Text »    PDF »
FERM Domain Interaction Promotes FAK Signaling.
J. M. Dunty, V. Gabarra-Niecko, M. L. King, D. F. J. Ceccarelli, M. J. Eck, and M. D. Schaller (2004)
Mol. Cell. Biol. 24, 5353-5368
   Abstract »    Full Text »    PDF »
Regulation of Focal Adhesion Kinase by Its Amino-Terminal Domain through an Autoinhibitory Interaction.
L. A. Cooper, T.-L. Shen, and J.-L. Guan (2003)
Mol. Cell. Biol. 23, 8030-8041
   Abstract »    Full Text »    PDF »
Differential Role of Proline-Rich Tyrosine Kinase 2 and Focal Adhesion Kinase in Determining Glioblastoma Migration and Proliferation.
C. A. Lipinski, N. L. Tran, C. Bay, J. Kloss, W. S. McDonough, C. Beaudry, M. E. Berens, and J. C. Loftus (2003)
Mol. Cancer Res. 1, 323-332
   Abstract »    Full Text »    PDF »
Regulation of Focal Adhesion Kinase by a Novel Protein Inhibitor FIP200.
S. Abbi, H. Ueda, C. Zheng, L. A. Cooper, J. Zhao, R. Christopher, and J.-L. Guan (2002)
Mol. Biol. Cell 13, 3178-3191
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3,4,5-Trisphosphate Directs Association of Src Homology 2-containing Signaling Proteins with Gelsolin.
M. A. Chellaiah, R. S. Biswas, D. Yuen, U. M. Alvarez, and K. A. Hruska (2001)
J. Biol. Chem. 276, 47434-47444
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882