Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

J. Cell Biol. 152 (1): 111-126

Copyright © 2001 by the Rockefeller University Press.

Original Article

Differential Localization of Rho Gtpases in Live Cells

Regulation by Hypervariable Regions and Rhogdi Binding

David Michaelsona,b, Joseph Sillettia,b, Gretchen Murphyc, Peter D'Eustachioc, Mark Rushc, , and Mark R. Philipsa,b

a Department of Medicine, New York University School of Medicine, New York, New York 10016
b Department of Cell Biology, New York University School of Medicine, New York, New York 10016
c Department of Biochemistry, New York University School of Medicine, New York, New York 10016
Departments of Medicine and Cell Biology, MSB251, New York University School of Medicine, 550 First Ave., New York, NY 10016.(212) 263-0759(212) 263-7404


Abstract: Determinants of membrane targeting of Rho proteins were investigated in live cells with green fluorescent fusion proteins expressed with or without Rho-guanine nucleotide dissociation inhibitor (GDI){alpha}. The hypervariable region determined to which membrane compartment each protein was targeted. Targeting was regulated by binding to RhoGDI{alpha} in the case of RhoA, Rac1, Rac2, and Cdc42hs but not RhoB or TC10. Although RhoB localized to the plasma membrane (PM), Golgi, and motile peri-Golgi vesicles, TC10 localized to PMs and endosomes. Inhibition of palmitoylation mislocalized H-Ras, RhoB, and TC10 to the endoplasmic reticulum. Although overexpressed Cdc42hs and Rac2 were observed predominantly on endomembrane, Rac1 was predominantly at the PM. RhoA was cytosolic even when expressed at levels in vast excess of RhoGDI{alpha}. Oncogenic Dbl stimulated translocation of green fluorescent protein (GFP)-Rac1, GFP-Cdc42hs, and GFP-RhoA to lamellipodia. RhoGDI binding to GFP-Cdc42hs was not affected by substituting farnesylation for geranylgeranylation. A palmitoylation site inserted into RhoA blocked RhoGDI{alpha} binding. Mutations that render RhoA, Cdc42hs, or Rac1, either constitutively active or dominant negative abrogated binding to RhoGDI{alpha} and redirected expression to both PMs and internal membranes. Thus, despite the common essential feature of the CAAX (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) motif, the subcellular localizations of Rho GTPases, like their functions, are diverse and dynamic.

Key Words: Rho • Rac • Cdc42hs • RhoGDI • green fluorescent protein

The online version of this article contains supplemental material.

Abbreviations used in this paper: 2BP, 2-bromopalmitate; BFA, brefeldin A; CCD, charge-coupled device; GDI, guanine nucleotide dissociation inhibitor; GEF, guanine nucleotide exchange factor; GFP, green fluorescent protein; GST, glutathione S-transferase; LAMP, lysosome-associated membrane protein; PAE, porcine aortic endothelial; pcCMT, prenylcysteine-directed COOH methyltransferase; PM, plasma membrane; SRF, serum response factor.

TROY Interacts with Rho Guanine Nucleotide Dissociation Inhibitor {alpha} (RhoGDI{alpha}) to Mediate Nogo-induced Inhibition of Neurite Outgrowth.
Y. Lu, X. Liu, J. Zhou, A. Huang, J. Zhou, and C. He (2013)
J. Biol. Chem. 288, 34276-34286
   Abstract »    Full Text »    PDF »
Identification of a Novel Prenyl and Palmitoyl Modification at the CaaX Motif of Cdc42 That Regulates RhoGDI Binding.
A. Nishimura and M. E. Linder (2013)
Mol. Cell. Biol. 33, 1417-1429
   Abstract »    Full Text »    PDF »
RAC1P29S is a spontaneously activating cancer-associated GTPase.
M. J. Davis, B. H. Ha, E. C. Holman, R. Halaban, J. Schlessinger, and T. J. Boggon (2013)
PNAS 110, 912-917
   Abstract »    Full Text »    PDF »
RhoB Differentially Controls Akt Function in Tumor Cells and Stromal Endothelial Cells during Breast Tumorigenesis.
S. Kazerounian, D. Gerald, M. Huang, Y. R. Chin, D. Udayakumar, N. Zheng, R. K. O'Donnell, C. Perruzzi, L. Mangiante, J. Pourat, et al. (2013)
Cancer Res. 73, 50-61
   Abstract »    Full Text »    PDF »
Regulation of RhoA Signaling by the cAMP-dependent Phosphorylation of RhoGDI{alpha}.
A. Oishi, N. Makita, J. Sato, and T. Iiri (2012)
J. Biol. Chem. 287, 38705-38715
   Abstract »    Full Text »    PDF »
RhoB regulates cell migration through altered focal adhesion dynamics.
F. M. Vega, A. Colomba, N. Reymond, M. Thomas, and A. J. Ridley (2012)
Open Bio 2, 120076
   Abstract »    Full Text »    PDF »
Nonpolarized signaling reveals two distinct modes of 3D cell migration.
R. J. Petrie, N. Gavara, R. S. Chadwick, and K. M. Yamada (2012)
J. Cell Biol. 197, 439-455
   Abstract »    Full Text »    PDF »
Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging.
A. Millius, N. Watanabe, and O. D. Weiner (2012)
J. Cell Sci. 125, 1165-1176
   Abstract »    Full Text »    PDF »
C-terminal Di-arginine Motif of Cdc42 Protein Is Essential for Binding to Phosphatidylinositol 4,5-Bisphosphate-containing Membranes and Inducing Cellular Transformation.
J. L. Johnson, J. W. Erickson, and R. A. Cerione (2012)
J. Biol. Chem. 287, 5764-5774
   Abstract »    Full Text »    PDF »
N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration.
E. Camand, F. Peglion, N. Osmani, M. Sanson, and S. Etienne-Manneville (2012)
J. Cell Sci. 125, 844-857
   Abstract »    Full Text »    PDF »
Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection.
J. I. Quetglas, B. Hernaez, I. Galindo, R. Munoz-Moreno, M. A. Cuesta-Geijo, and C. Alonso (2012)
J. Virol. 86, 1758-1767
   Abstract »    Full Text »    PDF »
Off the beaten paths: alternative and crosstalk regulation of Rho GTPases.
E. Boulter, S. Estrach, R. Garcia-Mata, and C. C. Feral (2012)
FASEB J 26, 469-479
   Abstract »    Full Text »    PDF »
Rac1 gets fattier.
F. D. Tsai and M. R. Philips (2012)
EMBO J. 31, 517-518
   Abstract »    Full Text »    PDF »
A palmitoylation switch mechanism regulates Rac1 function and membrane organization.
I. Navarro-Lerida, S. Sanchez-Perales, M. Calvo, C. Rentero, Y. Zheng, C. Enrich, and M. A. Del Pozo (2012)
EMBO J. 31, 534-551
   Abstract »    Full Text »    PDF »
Mitochondrial Rac1 GTPase Import and Electron Transfer from Cytochrome c Are Required for Pulmonary Fibrosis.
H. L. Osborn-Heaford, A. J. Ryan, S. Murthy, A.-M. Racila, C. He, J. C. Sieren, D. R. Spitz, and A. B. Carter (2012)
J. Biol. Chem. 287, 3301-3312
   Abstract »    Full Text »    PDF »
Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization.
T. Karlsson, M. Glogauer, R. P. Ellen, V.-M. Loitto, K.-E. Magnusson, and M. A. O. Magalhaes (2011)
J. Leukoc. Biol. 90, 963-973
   Abstract »    Full Text »    PDF »
RhoB deficiency in thymic medullary epithelium leads to early thymic atrophy.
A. Bravo-Nuevo, R. O'Donnell, A. Rosendahl, J. H. Chung, L. E. Benjamin, and C. Odaka (2011)
Int. Immunol. 23, 593-600
   Abstract »    Full Text »    PDF »
RhoGDI{alpha}-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis.
T. T. Giang Ho, A. Stultiens, J. Dubail, C. M. Lapiere, B. V. Nusgens, A. C. Colige, and C. F. Deroanne (2011)
Mol. Biol. Cell 22, 3263-3275
   Abstract »    Full Text »    PDF »
Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins.
M. R. Popoff and B. Geny (2011)
J. Med. Microbiol. 60, 1057-1069
   Abstract »    Full Text »    PDF »
The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration.
B.-J. de Kreuk, M. Nethe, M. Fernandez-Borja, E. C. Anthony, P. J. Hensbergen, A. M. Deelder, M. Plomann, and P. L. Hordijk (2011)
J. Cell Sci. 124, 2375-2388
   Abstract »    Full Text »    PDF »
The Dual Effect of Rac2 on Phospholipase D2 Regulation That Explains both the Onset and Termination of Chemotaxis.
H.-J. Peng, K. M. Henkels, M. Mahankali, C. Marchal, P. Bubulya, M. C. Dinauer, and J. Gomez-Cambronero (2011)
Mol. Cell. Biol. 31, 2227-2240
   Abstract »    Full Text »    PDF »
X-linked Inhibitor of Apoptosis Protein (XIAP) Mediates Cancer Cell Motility via Rho GDP Dissociation Inhibitor (RhoGDI)-dependent Regulation of the Cytoskeleton.
J. Liu, D. Zhang, W. Luo, Y. Yu, J. Yu, J. Li, X. Zhang, B. Zhang, J. Chen, X.-R. Wu, et al. (2011)
J. Biol. Chem. 286, 15630-15640
   Abstract »    Full Text »    PDF »
Therapeutic Levels of the Hydroxmethylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin Activate Ras Signaling via Phospholipase D2.
K.-j. Cho, M. M. Hill, S. Chigurupati, G. Du, R. G. Parton, and J. F. Hancock (2011)
Mol. Cell. Biol. 31, 1110-1120
   Abstract »    Full Text »    PDF »
Differential Effects of Prenylation and S-Acylation on Type I and II ROPS Membrane Interaction and Function.
N. Sorek, O. Gutman, E. Bar, M. Abu-Abied, X. Feng, M. P. Running, E. Lewinsohn, N. Ori, E. Sadot, Y. I. Henis, et al. (2011)
Plant Physiology 155, 706-720
   Abstract »    Full Text »    PDF »
Rac GTPase-activating Protein (Rac GAP) {alpha}1-Chimaerin Undergoes Proteasomal Degradation and Is Stabilized by Diacylglycerol Signaling in Neurons.
J. R. K. Marland, D. Pan, and P. C. Buttery (2011)
J. Biol. Chem. 286, 199-207
   Abstract »    Full Text »    PDF »
Cdc42 localization and cell polarity depend on membrane traffic.
N. Osmani, F. Peglion, P. Chavrier, and S. Etienne-Manneville (2010)
J. Cell Biol. 191, 1261-1269
   Abstract »    Full Text »    PDF »
Cytosolic Ras Supports Eye Development in Drosophila.
P. J. Sung, A. B. Rodrigues, A. Kleinberger, S. Quatela, E. A. Bach, and M. R. Philips (2010)
Mol. Cell. Biol. 30, 5649-5657
   Abstract »    Full Text »    PDF »
A Novel Testis-specific GTPase Serves as a Link to Proteasome Biogenesis: Functional Characterization of RhoS/RSA-14-44 in Spermatogenesis.
N. Zhang, J. Liang, Y. Tian, L. Yuan, L. Wu, S. Miao, S. Zong, and L. Wang (2010)
Mol. Biol. Cell 21, 4312-4324
   Abstract »    Full Text »    PDF »
The role of ubiquitylation and degradation in RhoGTPase signalling.
M. Nethe and P. L. Hordijk (2010)
J. Cell Sci. 123, 4011-4018
   Abstract »    Full Text »    PDF »
Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex.
Y. Yokota, T.-Y. Eom, A. Stanco, W.-Y. Kim, S. Rao, W. D. Snider, and E. S. Anton (2010)
Development 137, 4101-4110
   Abstract »    Full Text »    PDF »
Rac1 Recruits the Adapter Protein CMS/CD2AP to Cell-Cell Contacts.
T. J. van Duijn, E. C. Anthony, P. J. Hensbergen, A. M. Deelder, and P. L. Hordijk (2010)
J. Biol. Chem. 285, 20137-20146
   Abstract »    Full Text »    PDF »
Spatio-temporal Rho GTPase signaling - where are we now?.
O. Pertz (2010)
J. Cell Sci. 123, 1841-1850
   Abstract »    Full Text »    PDF »
Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth.
D. M. Eklund, E. M. Svensson, and B. Kost (2010)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2.
M. A. O. Magalhaes and M. Glogauer (2010)
J. Leukoc. Biol. 87, 545-555
   Abstract »    Full Text »    PDF »
Cdc42p Is Activated during Vacuole Membrane Fusion in a Sterol-dependent Subreaction of Priming.
L. Jones, K. Tedrick, A. Baier, M. R. Logan, and G. Eitzen (2010)
J. Biol. Chem. 285, 4298-4306
   Abstract »    Full Text »    PDF »
Sequestering of Rac by the Yersinia Effector YopO Blocks Fc{gamma} Receptor-mediated Phagocytosis.
E. Groves, K. Rittinger, M. Amstutz, S. Berry, D. W. Holden, G. R. Cornelis, and E. Caron (2010)
J. Biol. Chem. 285, 4087-4098
   Abstract »    Full Text »    PDF »
Yersinia pseudotuberculosis Virulence Determinants Invasin, YopE, and YopT Modulate RhoG Activity and Localization.
S. Mohammadi and R. R. Isberg (2009)
Infect. Immun. 77, 4771-4782
   Abstract »    Full Text »    PDF »
T-cadherin is located in the nucleus and centrosomes in endothelial cells.
A. V. Andreeva, M. A. Kutuzov, V. A. Tkachuk, and T. A. Voyno-Yasenetskaya (2009)
Am J Physiol Cell Physiol 297, C1168-C1177
   Abstract »    Full Text »    PDF »
RHO protein regulation of contraction in the human uterus.
J Lartey and A Lopez Bernal (2009)
Reproduction 138, 407-424
   Abstract »    Full Text »    PDF »
New Insights into How the Rho Guanine Nucleotide Dissociation Inhibitor Regulates the Interaction of Cdc42 with Membranes.
J. L. Johnson, J. W. Erickson, and R. A. Cerione (2009)
J. Biol. Chem. 284, 23860-23871
   Abstract »    Full Text »    PDF »
Phospholipase D1 Regulates Lymphocyte Adhesion via Upregulation of Rap1 at the Plasma Membrane.
A. Mor, J. P. Wynne, I. M. Ahearn, M. L. Dustin, G. Du, and M. R. Philips (2009)
Mol. Cell. Biol. 29, 3297-3306
   Abstract »    Full Text »    PDF »
Silencing of D4-GDI Inhibits Growth and Invasive Behavior in MDA-MB-231 Cells by Activation of Rac-dependent p38 and JNK Signaling.
Y. Zhang, L. A. R. Rosado, S. Y. Moon, and B. Zhang (2009)
J. Biol. Chem. 284, 12956-12965
   Abstract »    Full Text »    PDF »
Rho GDP Dissociation Inhibitor 2 Suppresses Metastasis via Unconventional Regulation of RhoGTPases.
K. Moissoglu, K. S. McRoberts, J. A. Meier, D. Theodorescu, and M. A. Schwartz (2009)
Cancer Res. 69, 2838-2844
   Abstract »    Full Text »    PDF »
The Polybasic Region of Rac1 Modulates Bacterial Uptake Independently of Self-association and Membrane Targeting.
K.-W. Wong, S. Mohammadi, and R. R. Isberg (2008)
J. Biol. Chem. 283, 35954-35965
   Abstract »    Full Text »    PDF »
Memo-RhoA-mDia1 signaling controls microtubules, the actin network, and adhesion site formation in migrating cells.
K. Zaoui, S. Honore, D. Isnardon, D. Braguer, and A. Badache (2008)
J. Cell Biol. 183, 401-408
   Abstract »    Full Text »    PDF »
Phosphorylation of GTP dissociation inhibitor by PKA negatively regulates RhoA.
J. Qiao, O. Holian, B.-S. Lee, F. Huang, J. Zhang, and H. Lum (2008)
Am J Physiol Cell Physiol 295, C1161-C1168
   Abstract »    Full Text »    PDF »
Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division.
D. Michaelson, W. Abidi, D. Guardavaccaro, M. Zhou, I. Ahearn, M. Pagano, and M. R. Philips (2008)
J. Cell Biol. 181, 485-496
   Abstract »    Full Text »    PDF »
Rho Family GTPase Modification and Dependence on CAAX Motif-signaled Posttranslational Modification.
P. J. Roberts, N. Mitin, P. J. Keller, E. J. Chenette, J. P. Madigan, R. O. Currin, A. D. Cox, O. Wilson, P. Kirschmeier, and C. J. Der (2008)
J. Biol. Chem. 283, 25150-25163
   Abstract »    Full Text »    PDF »
{beta}-PIX and Rac1 GTPase Mediate Trafficking and Negative Regulation of NOD2.
J. Eitel, M. Krull, A. C. Hocke, P. D. N'Guessan, J. Zahlten, B. Schmeck, H. Slevogt, S. Hippenstiel, N. Suttorp, and B. Opitz (2008)
J. Immunol. 181, 2664-2671
   Abstract »    Full Text »    PDF »
Rab18 and Rab43 have key roles in ER-Golgi trafficking.
S. Y. Dejgaard, A. Murshid, A. Erman, O. Kizilay, D. Verbich, R. Lodge, K. Dejgaard, T. B. N. Ly-Hartig, R. Pepperkok, J. C. Simpson, et al. (2008)
J. Cell Sci. 121, 2768-2781
   Abstract »    Full Text »    PDF »
RhoA-GDP Regulates RhoB Protein Stability: POTENTIAL INVOLVEMENT OF RhoGDI{alpha}.
T. T. G. Ho, S. D. Merajver, C. M. Lapiere, B. V. Nusgens, and C. F. Deroanne (2008)
J. Biol. Chem. 283, 21588-21598
   Abstract »    Full Text »    PDF »
Regulation of Membrane Trafficking, Cytoskeleton Dynamics, and Cell Polarity by ROP/RAC GTPases.
S. Yalovsky, D. Bloch, N. Sorek, and B. Kost (2008)
Plant Physiology 147, 1527-1543
   Full Text »    PDF »
Phospholipase D Activity Regulates Integrin-mediated Cell Spreading and Migration by Inducing GTP-Rac Translocation to the Plasma Membrane.
Y. C. Chae, J. H. Kim, K. L. Kim, H. W. Kim, H. Y. Lee, W. D. Heo, T. Meyer, P.-G. Suh, and S. H. Ryu (2008)
Mol. Biol. Cell 19, 3111-3123
   Abstract »    Full Text »    PDF »
MAP1A Light Chain-2 Interacts with GTP-RhoB to Control Epidermal Growth Factor (EGF)-dependent EGF Receptor Signaling.
I. Lajoie-Mazenc, D. Tovar, M. Penary, B. Lortal, S. Allart, C. Favard, M. Brihoum, A. Pradines, and G. Favre (2008)
J. Biol. Chem. 283, 4155-4164
   Abstract »    Full Text »    PDF »
Specificity and Mechanism of Action of EHT 1864, a Novel Small Molecule Inhibitor of Rac Family Small GTPases.
A. Shutes, C. Onesto, V. Picard, B. Leblond, F. Schweighoffer, and C. J. Der (2007)
J. Biol. Chem. 282, 35666-35678
   Abstract »    Full Text »    PDF »
Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity.
R. S. Atwal, J. Xia, D. Pinchev, J. Taylor, R. M. Epand, and R. Truant (2007)
Hum. Mol. Genet. 16, 2600-2615
   Abstract »    Full Text »    PDF »
ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases.
A. Schmandke, A. Schmandke, and S. M. Strittmatter (2007)
Neuroscientist 13, 454-469
   Abstract »    PDF »
RhoB plays an essential role in CXCR2 sorting decisions.
N. F. Neel, L. A. Lapierre, J. R. Goldenring, and A. Richmond (2007)
J. Cell Sci. 120, 1559-1571
   Abstract »    Full Text »    PDF »
IQ-domain GTPase-activating Protein 1 Regulates beta-Catenin at Membrane Ruffles and Its Role in Macropinocytosis of N-cadherin and Adenomatous Polyposis Coli.
M. Sharma and B. R. Henderson (2007)
J. Biol. Chem. 282, 8545-8556
   Abstract »    Full Text »    PDF »
Activation Status-Coupled Transient S Acylation Determines Membrane Partitioning of a Plant Rho-Related GTPase.
N. Sorek, L. Poraty, H. Sternberg, E. Bar, E. Lewinsohn, and S. Yalovsky (2007)
Mol. Cell. Biol. 27, 2144-2154
   Abstract »    Full Text »    PDF »
Helicobacter pylori CagA Induces AGS Cell Elongation through a Cell Retraction Defect That Is Independent of Cdc42, Rac1, and Arp2/3.
K. M. Bourzac, C. M. Botham, and K. Guillemin (2007)
Infect. Immun. 75, 1203-1213
   Abstract »    Full Text »    PDF »
Dual Lipid Modification of Arabidopsis G{gamma}-Subunits Is Required for Efficient Plasma Membrane Targeting.
Q. Zeng, X. Wang, and M. P. Running (2007)
Plant Physiology 143, 1119-1131
   Abstract »    Full Text »    PDF »
Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET.
J. P. ten Klooster, I. v. Leeuwen, N. Scheres, E. C. Anthony, and P. L. Hordijk (2007)
EMBO J. 26, 336-345
   Abstract »    Full Text »    PDF »
Disruption of RhoGDI and RhoA Regulation by a Rac1 Specificity Switch Mutant.
K.-W. Wong, S. Mohammadi, and R. R. Isberg (2006)
J. Biol. Chem. 281, 40379-40388
   Abstract »    Full Text »    PDF »
PI(3,4,5)P3 and PI(4,5)P2 Lipids Target Proteins with Polybasic Clusters to the Plasma Membrane.
W. D. Heo, T. Inoue, W. S. Park, M. L. Kim, B. O. Park, T. J. Wandless, and T. Meyer (2006)
Science 314, 1458-1461
   Abstract »    Full Text »    PDF »
SWAN-1, a Caenorhabditis elegans WD Repeat Protein of the AN11 Family, Is a Negative Regulator of Rac GTPase Function.
Y. Yang, J. Lu, J. Rovnak, S. L. Quackenbush, and E. A. Lundquist (2006)
Genetics 174, 1917-1932
   Abstract »    Full Text »    PDF »
Solo/Trio8, a Membrane-Associated Short Isoform of Trio, Modulates Endosome Dynamics and Neurite Elongation.
Y.-J. Sun, K. Nishikawa, H. Yuda, Y.-L. Wang, H. Osaka, N. Fukazawa, A. Naito, Y. Kudo, K. Wada, and S. Aoki (2006)
Mol. Cell. Biol. 26, 6923-6935
   Abstract »    Full Text »    PDF »
Cell Migration and Signaling Specificity Is Determined by the Phosphatidylserine Recognition Motif of Rac1.
C. V. Finkielstein, M. Overduin, and D. G. S. Capelluto (2006)
J. Biol. Chem. 281, 27317-27326
   Abstract »    Full Text »    PDF »
Receptor Activation Alters Inner Surface Potential During Phagocytosis.
T. Yeung, M. Terebiznik, L. Yu, J. Silvius, W. M. Abidi, M. Philips, T. Levine, A. Kapus, and S. Grinstein (2006)
Science 313, 347-351
   Abstract »    Full Text »    PDF »
Association of RhoGDI{alpha} with Rac1 GTPase mediates free radical production during myocardial hypertrophy.
F. Custodis, M. Eberl, H. Kilter, M. Bohm, and U. Laufs (2006)
Cardiovasc Res 71, 342-351
   Abstract »    Full Text »    PDF »
Multiple Sequence Elements Facilitate Chp Rho GTPase Subcellular Location, Membrane Association, and Transforming Activity.
E. J. Chenette, N. Y. Mitin, and C. J. Der (2006)
Mol. Biol. Cell 17, 3108-3121
   Abstract »    Full Text »    PDF »
The physiology of membrane transport and endomembrane-based signalling.
M. Sallese, T. Pulvirenti, and A. Luini (2006)
EMBO J. 25, 2663-2673
   Abstract »    Full Text »    PDF »
Compartmentalized signaling of Ras in fission yeast.
B. Onken, H. Wiener, M. R. Philips, and E. C. Chang (2006)
PNAS 103, 9045-9050
   Abstract »    Full Text »    PDF »
Nuclear Rho Kinase, ROCK2, Targets p300 Acetyltransferase.
T. Tanaka, D. Nishimura, R.-C. Wu, M. Amano, T. Iso, L. Kedes, H. Nishida, K. Kaibuchi, and Y. Hamamori (2006)
J. Biol. Chem. 281, 15320-15329
   Abstract »    Full Text »    PDF »
In Vivo Dynamics of Rac-Membrane Interactions.
K. Moissoglu, B. M. Slepchenko, N. Meller, A. F. Horwitz, and M. A. Schwartz (2006)
Mol. Biol. Cell 17, 2770-2779
   Abstract »    Full Text »    PDF »
Thematic review series: Lipid Posttranslational Modifications CAAX modification and membrane targeting of Ras.
L. P. Wright and M. R. Philips (2006)
J. Lipid Res. 47, 883-891
   Abstract »    Full Text »    PDF »
Regulation of NADPH Oxidases: The Role of Rac Proteins.
P. L. Hordijk (2006)
Circ. Res. 98, 453-462
   Abstract »    Full Text »    PDF »
Targeting and activation of Rac1 are mediated by the exchange factor {beta}-Pix.
J. P. ten Klooster, Z. M. Jaffer, J. Chernoff, and P. L. Hordijk (2006)
J. Cell Biol. 172, 759-769
   Abstract »    Full Text »    PDF »
Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid.
C. Kim and M. C. Dinauer (2006)
J. Leukoc. Biol. 79, 223-234
   Abstract »    Full Text »    PDF »
Dissecting the Role of Rho-mediated Signaling in Contractile Ring Formation.
K. Kamijo, N. Ohara, M. Abe, T. Uchimura, H. Hosoya, J.-S. Lee, and T. Miki (2006)
Mol. Biol. Cell 17, 43-55
   Abstract »    Full Text »    PDF »
K-ras4B and Prenylated Proteins Lacking "Second Signals" Associate Dynamically with Cellular Membranes.
J. R. Silvius, P. Bhagatji, R. Leventis, and D. Terrone (2006)
Mol. Biol. Cell 17, 192-202
   Abstract »    Full Text »    PDF »
Cdc42 Induces Activation Loop Phosphorylation and Membrane Targeting of Mixed Lineage Kinase 3.
Y. Du, B. C. Bock, K. A. Schachter, M. Chao, and K. A. Gallo (2005)
J. Biol. Chem. 280, 42984-42993
   Abstract »    Full Text »    PDF »
Transforming Activity of the Rho Family GTPase, Wrch-1, a Wnt-regulated Cdc42 Homolog, Is Dependent on a Novel Carboxyl-terminal Palmitoylation Motif.
A. C. Berzat, J. E. Buss, E. J. Chenette, C. A. Weinbaum, A. Shutes, C. J. Der, A. Minden, and A. D. Cox (2005)
J. Biol. Chem. 280, 33055-33065
   Abstract »    Full Text »    PDF »
Localized RhoA Activation as a Requirement for the Induction of Membrane Ruffling.
K. Kurokawa and M. Matsuda (2005)
Mol. Biol. Cell 16, 4294-4303
   Abstract »    Full Text »    PDF »
Isoform-Specific Membrane Targeting Mechanism of Rac during Fc{gamma}R-Mediated Phagocytosis: Positive Charge-Dependent and Independent Targeting Mechanism of Rac to the Phagosome.
T. Ueyama, M. Eto, K. Kami, T. Tatsuno, T. Kobayashi, Y. Shirai, M. R. Lennartz, R. Takeya, H. Sumimoto, and N. Saito (2005)
J. Immunol. 175, 2381-2390
   Abstract »    Full Text »    PDF »
Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway.
J. S. Goodwin, K. R. Drake, C. Rogers, L. Wright, J. Lippincott-Schwartz, M. R. Philips, and A. K. Kenworthy (2005)
J. Cell Biol. 170, 261-272
   Abstract »    Full Text »    PDF »
Critical and Distinct Roles of Amino- and Carboxyl-terminal Sequences in Regulation of the Biological Activity of the Chp Atypical Rho GTPase.
E. J. Chenette, A. Abo, and C. J. Der (2005)
J. Biol. Chem. 280, 13784-13792
   Abstract »    Full Text »    PDF »
Postprenylation CAAX Processing Is Required for Proper Localization of Ras but Not Rho GTPases.
D. Michaelson, W. Ali, V. K. Chiu, M. Bergo, J. Silletti, L. Wright, S. G. Young, and M. Philips (2005)
Mol. Biol. Cell 16, 1606-1616
   Abstract »    Full Text »    PDF »
An Acylation Cycle Regulates Localization and Activity of Palmitoylated Ras Isoforms.
O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. H. Bastiaens (2005)
Science 307, 1746-1752
   Abstract »    Full Text »    PDF »
Uncoupling of Inhibitory and Shuttling Functions of Rho GDP Dissociation Inhibitors.
E. Dransart, A. Morin, J. Cherfils, and B. Olofsson (2005)
J. Biol. Chem. 280, 4674-4683
   Abstract »    Full Text »    PDF »
Regulation of Cystic Fibrosis Transmembrane Regulator Trafficking and Protein Expression by a Rho Family Small GTPase TC10.
J. Cheng, H. Wang, and W. B. Guggino (2005)
J. Biol. Chem. 280, 3731-3739
   Abstract »    Full Text »    PDF »
Rac GTPase Isoform-specific Regulation of NADPH Oxidase and Chemotaxis in Murine Neutrophils in Vivo: ROLE OF THE C-TERMINAL POLYBASIC DOMAIN.
A. Yamauchi, C. C. Marchal, J. Molitoris, N. Pech, U. Knaus, J. Towe, S. J. Atkinson, and M. C. Dinauer (2005)
J. Biol. Chem. 280, 953-964
   Abstract »    Full Text »    PDF »
Clostridium difficile Toxin A Induces Expression of the Stress-induced Early Gene Product RhoB.
R. Gerhard, H. Tatge, H. Genth, T. Thum, J. Borlak, G. Fritz, and I. Just (2005)
J. Biol. Chem. 280, 1499-1505
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882