Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 152 (5): 1087-1098

Copyright © 2001 by the Rockefeller University Press.


Original Article

Mammalian Sprouty-1 and -2 Are Membrane-Anchored Phosphoprotein Inhibitors of Growth Factor Signaling in Endothelial Cells

Maria-Antonietta Impagnatielloa, Stefan Weitzera, Grainne Gannona, Amelia Compagnia, Matt Cottena, , and Gerhard Christoforia

a Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.43-1-798-715343-1-79730-840

christofori{at}nt.imp.univie.ac.at

Abstract: Growth factor–induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1–4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor– and vascular endothelial growth factor–induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor–induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.

Key Words: angiogenesis • endothelial cells • fibroblast growth factors • signal transduction • vascular endothelial growth factor



Abbreviations used in this paper: BCE, bovine capillary endothelial cell; DSpry, Drosophila Sprouty; EGF, epidermal growth factor; FGF, fibroblast growth factor; hSpry, human Sprouty; HUVEC, human umbilical vein endothelial cell; LDH, lactate dehydrogenase; MAP, mitogen-activating protein; MEK, MAP kinase kinase; mSpry, mouse Sprouty; PPC, particles per cell; RTK, receptor tyrosine kinase; VEGF, vascular EGF.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Regulation of Cellular Levels of Sprouty2 Protein by Prolyl Hydroxylase Domain and von Hippel-Lindau Proteins.
K. Anderson, K. A. Nordquist, X. Gao, K. C. Hicks, B. Zhai, S. P. Gygi, and T. B. Patel (2011)
J. Biol. Chem. 286, 42027-42036
   Abstract »    Full Text »    PDF »
Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters.
Q. Zhou, R. Gallagher, R. Ufret-Vincenty, X. Li, E. N. Olson, and S. Wang (2011)
PNAS 108, 8287-8292
   Abstract »    Full Text »    PDF »
MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy.
J. Long, Y. Wang, W. Wang, B. H. J. Chang, and F. R. Danesh (2011)
J. Biol. Chem. 286, 11837-11848
   Abstract »    Full Text »    PDF »
Sprouty2 downregulates angiogenesis during mouse skin wound healing.
M. S. Wietecha, L. Chen, M. J. Ranzer, K. Anderson, C. Ying, T. B. Patel, and L. A. DiPietro (2011)
Am J Physiol Heart Circ Physiol 300, H459-H467
   Abstract »    Full Text »    PDF »
ErbB2 Stabilizes Epidermal Growth Factor Receptor (EGFR) Expression via Erk and Sprouty2 in Extracellular Matrix-detached Cells.
A. R. Grassian, Z. T. Schafer, and J. S. Brugge (2011)
J. Biol. Chem. 286, 79-90
   Abstract »    Full Text »    PDF »
Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo.
N. Panagiotaki, F. Dajas-Bailador, E. Amaya, N. Papalopulu, and K. Dorey (2010)
Development 137, 4005-4015
   Abstract »    Full Text »    PDF »
Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells.
H. Chen, T. Kluz, R. Zhang, and M. Costa (2010)
Carcinogenesis 31, 2136-2144
   Abstract »    Full Text »    PDF »
Establishment of Extracellular Signal-Regulated Kinase 1/2 Bistability and Sustained Activation through Sprouty 2 and Its Relevance for Epithelial Function.
W. Liu, K. Tundwal, Q. Liang, N. Goplen, S. Rozario, N. Quayum, M. Gorska, S. Wenzel, S. Balzar, and R. Alam (2010)
Mol. Cell. Biol. 30, 1783-1799
   Abstract »    Full Text »    PDF »
HECT Domain-containing E3 Ubiquitin Ligase Nedd4 Interacts with and Ubiquitinates Sprouty2.
F. Edwin, K. Anderson, and T. B. Patel (2010)
J. Biol. Chem. 285, 255-264
   Abstract »    Full Text »    PDF »
Sprouty proteins: modified modulators, matchmakers or missing links?.
G R Guy, R A Jackson, P Yusoff, and S Y Chow (2009)
J. Endocrinol. 203, 191-202
   Abstract »    Full Text »    PDF »
Spred2 interaction with the late endosomal protein NBR1 down-regulates fibroblast growth factor receptor signaling.
F. K. Mardakheh, M. Yekezare, L. M. Machesky, and J. K. Heath (2009)
J. Cell Biol. 187, 265-277
   Abstract »    Full Text »    PDF »
Intermolecular Interactions of Sprouty Proteins and Their Implications in Development and Disease.
F. Edwin, K. Anderson, C. Ying, and T. B. Patel (2009)
Mol. Pharmacol. 76, 679-691
   Abstract »    Full Text »    PDF »
Sprouty2 Association with B-Raf Is Regulated by Phosphorylation and Kinase Conformation.
S. C. Brady, M. L. Coleman, J. Munro, S. M. Feller, N. A. Morrice, and M. F. Olson (2009)
Cancer Res. 69, 6773-6781
   Abstract »    Full Text »    PDF »
Sprouty2 Interacts with Protein Kinase C{delta} and Disrupts Phosphorylation of Protein Kinase D1.
S. Y. Chow, C. Y. Yu, and G. R. Guy (2009)
J. Biol. Chem. 284, 19623-19636
   Abstract »    Full Text »    PDF »
Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas.
M. J. Frank, D. W. Dawson, S. J. Bensinger, J. S. Hong, W. M. Knosp, L. Xu, C. E. Balatoni, E. L. Allen, R. R. Shen, D. Bar-Sagi, et al. (2009)
Blood 113, 2478-2487
   Abstract »    Full Text »    PDF »
Integral Role of Transcription Factor 8 in the Negative Regulation of Tumor Angiogenesis.
T. Inuzuka, M. Tsuda, S. Tanaka, H. Kawaguchi, Y. Higashi, and Y. Ohba (2009)
Cancer Res. 69, 1678-1684
   Abstract »    Full Text »    PDF »
Sprouty2-Mediated Inhibition of Fibroblast Growth Factor Signaling Is Modulated by the Protein Kinase DYRK1A.
S. Aranda, M. Alvarez, S. Turro, A. Laguna, and S. de la Luna (2008)
Mol. Cell. Biol. 28, 5899-5911
   Abstract »    Full Text »    PDF »
MicroRNA-21 Targets Sprouty2 and Promotes Cellular Outgrowths.
D. Sayed, S. Rane, J. Lypowy, M. He, I.-Y. Chen, H. Vashistha, L. Yan, A. Malhotra, D. Vatner, and M. Abdellatif (2008)
Mol. Biol. Cell 19, 3272-3282
   Abstract »    Full Text »    PDF »
Non-canonical fibroblast growth factor signalling in angiogenesis.
M. Murakami, A. Elfenbein, and M. Simons (2008)
Cardiovasc Res 78, 223-231
   Abstract »    Full Text »    PDF »
Spred1 and TESK1--Two New Interaction Partners of the Kinase MARKK/TAO1 That Link the Microtubule and Actin Cytoskeleton.
C. Johne, D. Matenia, X.-y. Li, T. Timm, K. Balusamy, and E.-M. Mandelkow (2008)
Mol. Biol. Cell 19, 1391-1403
   Abstract »    Full Text »    PDF »
Modulation of Endocrine Pancreas Development but not {beta}-Cell Carcinogenesis by Sprouty4.
F. Jaggi, M. A. Cabrita, A.-K. T. Perl, and G. Christofori (2008)
Mol. Cancer Res. 6, 468-482
   Abstract »    Full Text »    PDF »
A Novel Role of Sprouty 2 in Regulating Cellular Apoptosis.
F. Edwin and T. B. Patel (2008)
J. Biol. Chem. 283, 3181-3190
   Abstract »    Full Text »    PDF »
Evidence That Sprouty 2 Is Necessary for Sarcoma Formation by H-Ras Oncogene-transformed Human Fibroblasts.
P. Lito, B. D. Mets, S. Kleff, S. O'Reilly, V. M. Maher, and J. J. McCormick (2008)
J. Biol. Chem. 283, 2002-2009
   Abstract »    Full Text »    PDF »
Tesk1 Interacts with Spry2 to Abrogate Its Inhibition of ERK Phosphorylation Downstream of Receptor Tyrosine Kinase Signaling.
S. Chandramouli, C. Y. Yu, P. Yusoff, D.-H. Lao, H. F. Leong, K. Mizuno, and G. R. Guy (2008)
J. Biol. Chem. 283, 1679-1691
   Abstract »    Full Text »    PDF »
Lrig1 Is an Endogenous Inhibitor of Ret Receptor Tyrosine Kinase Activation, Downstream Signaling, and Biological Responses to GDNF.
F. Ledda, O. Bieraugel, S. S. Fard, M. Vilar, and G. Paratcha (2008)
J. Neurosci. 28, 39-49
   Abstract »    Full Text »    PDF »
Spreds Are Essential for Embryonic Lymphangiogenesis by Regulating Vascular Endothelial Growth Factor Receptor 3 Signaling.
K. Taniguchi, R.-i. Kohno, T. Ayada, R. Kato, K. Ichiyama, T. Morisada, Y. Oike, Y. Yonemitsu, Y. Maehara, and A. Yoshimura (2007)
Mol. Cell. Biol. 27, 4541-4550
   Abstract »    Full Text »    PDF »
Down-Regulation of Sprouty2 in Non-Small Cell Lung Cancer Contributes to Tumor Malignancy via Extracellular Signal-Regulated Kinase Pathway-Dependent and -Independent Mechanisms.
H. Sutterluty, C.-E. Mayer, U. Setinek, J. Attems, S. Ovtcharov, M. Mikula, W. Mikulits, M. Micksche, and W. Berger (2007)
Mol. Cancer Res. 5, 509-520
   Abstract »    Full Text »    PDF »
Direct Binding of PP2A to Sprouty2 and Phosphorylation Changes Are a Prerequisite for ERK Inhibition Downstream of Fibroblast Growth Factor Receptor Stimulation.
D.-H. Lao, P. Yusoff, S. Chandramouli, R. J. Philp, C. W. Fong, R. A. Jackson, T. Y. Saw, C. Y. Yu, and G. R. Guy (2007)
J. Biol. Chem. 282, 9117-9126
   Abstract »    Full Text »    PDF »
The VASP-Spred-Sprouty Domain Puzzle.
K. Bundschu, U. Walter, and K. Schuh (2006)
J. Biol. Chem. 281, 36477-36481
   Abstract »    Full Text »    PDF »
A Functional Interaction between Sprouty Proteins and Caveolin-1.
M. A. Cabrita, F. Jaggi, S. P. Widjaja, and G. Christofori (2006)
J. Biol. Chem. 281, 29201-2912
   Abstract »    Full Text »    PDF »
Dual Effects of Sprouty1 on TCR Signaling Depending on the Differentiation State of the T Cell.
H. Choi, S.-Y. Cho, R. H. Schwartz, and K. Choi (2006)
J. Immunol. 176, 6034-6045
   Abstract »    Full Text »    PDF »
Vesicular Trafficking of Tyrosine Kinase Receptors and Associated Proteins in the Regulation of Signaling and Vascular Function.
S. Mukherjee, M. Tessema, and A. Wandinger-Ness (2006)
Circ. Res. 98, 743-756
   Abstract »    Full Text »    PDF »
Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases.
L. A. Jarvis, S. J. Toering, M. A. Simon, M. A. Krasnow, and R. K. Smith-Bolton (2006)
Development 133, 1133-1142
   Abstract »    Full Text »    PDF »
Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation.
J. DaSilva, L. Xu, H. J. Kim, W. T. Miller, and D. Bar-Sagi (2006)
Mol. Cell. Biol. 26, 1898-1907
   Abstract »    Full Text »    PDF »
The Tumor Suppressor PTEN Is Necessary for Human Sprouty 2-mediated Inhibition of Cell Proliferation.
F. Edwin, R. Singh, R. Endersby, S. J. Baker, and T. B. Patel (2006)
J. Biol. Chem. 281, 4816-4822
   Abstract »    Full Text »    PDF »
Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms.
K.-i. Ozaki, S. Miyazaki, S. Tanimura, and M. Kohno (2005)
J. Cell Sci. 118, 5861-5871
   Abstract »    Full Text »    PDF »
Mammalian sprouty proteins assemble into large monodisperse particles having the properties of intracellular nanobatteries.
X. Wu, P. B. Alexander, Y. He, M. Kikkawa, P. D. Vogel, and S. L. McKnight (2005)
PNAS 102, 14058-14062
   Abstract »    Full Text »    PDF »
Sprouty-2 Overexpression in C2C12 Cells Confers Myogenic Differentiation Properties in the Presence of FGF2.
C. de Alvaro, N. Martinez, J. M. Rojas, and M. Lorenzo (2005)
Mol. Biol. Cell 16, 4454-4461
   Abstract »    Full Text »    PDF »
Expression and regulation of Sprouty-2 in the granulosa-lutein cells of the corpus luteum.
R. Haimov-Kochman, A. Ravhon, D. Prus, C. Greenfield, Z. Finci-Yeheskel, D. S.Goldman-Wohl, S. Natanson-Yaron, R. Reich, S. Yagel, and A. Hurwitz (2005)
Mol. Hum. Reprod. 11, 537-542
   Abstract »    Full Text »    PDF »
Phosphorylation of Carboxyl-terminal Tyrosines Modulates the Specificity of Sprouty-2 Inhibition of Different Signaling Pathways.
C. Rubin, Y. Zwang, N. Vaisman, D. Ron, and Y. Yarden (2005)
J. Biol. Chem. 280, 9735-9744
   Abstract »    Full Text »    PDF »
Regulation of Vascular Smooth Muscle Cell Proliferation and Migration by Human Sprouty 2.
C. Zhang, D. Chaturvedi, L. Jaggar, D. Magnuson, J. M. Lee, and T. B. Patel (2005)
Arterioscler Thromb Vasc Biol 25, 533-538
   Abstract »    Full Text »    PDF »
FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity.
X. Li, V. G. Brunton, H. R. Burgar, L. M. Wheldon, and J. K. Heath (2004)
J. Cell Sci. 117, 6007-6017
   Abstract »    Full Text »    PDF »
FGF-10 induces SP-C and Bmp4 and regulates proximal-distal patterning in embryonic tracheal epithelium.
B. A. Hyatt, X. Shangguan, and J. M. Shannon (2004)
Am J Physiol Lung Cell Mol Physiol 287, L1116-L1126
   Abstract »    Full Text »    PDF »
Src Tyrosine Kinase Inhibitor PP2 Markedly Enhances Ras-independent Activation of Raf-1 Protein Kinase by Phorbol Myristate Acetate and H2O2.
M. Lee, J.-Y. Kim, and W. B. Anderson (2004)
J. Biol. Chem. 279, 48692-48701
   Abstract »    Full Text »    PDF »
The Ras/Mitogen-Activated Protein Kinase Pathway Inhibitor and Likely Tumor Suppressor Proteins, Sprouty 1 and Sprouty 2 Are Deregulated in Breast Cancer.
T. L. Lo, P. Yusoff, C. W. Fong, K. Guo, B. J. McCaw, W. A. Phillips, H. Yang, E. S. M. Wong, H. F. Leong, Q. Zeng, et al. (2004)
Cancer Res. 64, 6127-6136
   Abstract »    Full Text »    PDF »
Identification and regulation of Sprouty1, a negative inhibitor of the ERK cascade, in the human heart.
R. C. Huebert, Q. Li, N. Adhikari, N. J. Charles, X. Han, M.-K. Ezzat, S. Grindle, S. Park, S. Ormaza, D. Fermin, et al. (2004)
Physiol Genomics 18, 284-289
   Abstract »    Full Text »    PDF »
The Expression of Sprouty1, an Inhibitor of Fibroblast Growth Factor Signal Transduction, Is Decreased in Human Prostate Cancer.
B. Kwabi-Addo, J. Wang, H. Erdem, A. Vaid, P. Castro, G. Ayala, and M. Ittmann (2004)
Cancer Res. 64, 4728-4735
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Sprouty Proteins Regulates Their Ability to Inhibit Growth Factor Signaling: A Dual Feedback Loop.
J. M. Mason, D. J. Morrison, B. Bassit, M. Dimri, H. Band, J. D. Licht, and I. Gross (2004)
Mol. Biol. Cell 15, 2176-2188
   Abstract »    Full Text »    PDF »
The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development.
I. Gross, D. J. Morrison, D. P. Hyink, K. Georgas, M. A. English, M. Mericskay, S. Hosono, D. Sassoon, P. D. Wilson, M. Little, et al. (2003)
J. Biol. Chem. 278, 41420-41430
   Abstract »    Full Text »    PDF »
A Novel Interleukin-17 Receptor-like Protein Identified in Human Umbilical Vein Endothelial Cells Antagonizes Basic Fibroblast Growth Factor-induced Signaling.
R.-B. Yang, C. K. D. Ng, S. M. Wasserman, L. G. Komuves, M. E. Gerritsen, and J. N. Topper (2003)
J. Biol. Chem. 278, 33232-33238
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Sprouty2 Enhances Its Interaction with c-Cbl and Is Crucial for Its Function.
C. W. Fong, H. F. Leong, E. S. M. Wong, J. Lim, P. Yusoff, and G. R. Guy (2003)
J. Biol. Chem. 278, 33456-33464
   Abstract »    Full Text »    PDF »
Sprouty: how does the branch manager work?.
G. R. Guy, E. S. M. Wong, P. Yusoff, S. Chandramouli, T. L. Lo, J. Lim, and C. W. Fong (2003)
J. Cell Sci. 116, 3061-3068
   Abstract »    Full Text »    PDF »
Caveolin, Caveolae, and Endothelial Cell Function.
P. G. Frank, S. E. Woodman, D. S. Park, and M. P. Lisanti (2003)
Arterioscler Thromb Vasc Biol 23, 1161-1168
   Abstract »    Full Text »    PDF »
Sef Inhibits Fibroblast Growth Factor Signaling by Inhibiting FGFR1 Tyrosine Phosphorylation and Subsequent ERK Activation.
D. Kovalenko, X. Yang, R. J. Nadeau, L. K. Harkins, and R. Friesel (2003)
J. Biol. Chem. 278, 14087-14091
   Abstract »    Full Text »    PDF »
Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain.
E. E. Storm, J. L. R. Rubenstein, and G. R. Martin (2003)
PNAS 100, 1757-1762
   Abstract »    Full Text »    PDF »
Protein-tyrosine Phosphatase-1B (PTP1B) Mediates the Anti-migratory Actions of Sprouty.
Y. Yigzaw, H. M. Poppleton, N. Sreejayan, A. Hassid, and T. B. Patel (2003)
J. Biol. Chem. 278, 284-288
   Abstract »    Full Text »    PDF »
The Cysteine-Rich Sprouty Translocation Domain Targets Mitogen-Activated Protein Kinase Inhibitory Proteins to Phosphatidylinositol 4,5-Bisphosphate in Plasma Membranes.
J. Lim, P. Yusoff, E. S. M. Wong, S. Chandramouli, D.-H. Lao, C. W. Fong, and G. R. Guy (2002)
Mol. Cell. Biol. 22, 7953-7966
   Abstract »    Full Text »    PDF »
Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis.
C. Ruhrberg, H. Gerhardt, M. Golding, R. Watson, S. Ioannidou, H. Fujisawa, C. Betsholtz, and D. T. Shima (2002)
Genes & Dev. 16, 2684-2698
   Abstract »    Full Text »    PDF »
Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling.
E. S. M. Wong, C. W. Fong, J. Lim, P. Yusoff, B. C. Low, W. Y. Langdon, and G. R. Guy (2002)
EMBO J. 21, 4796-4808
   Abstract »    Full Text »    PDF »
The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins.
J. E. Egan, A. B. Hall, B. A. Yatsula, and D. Bar-Sagi (2002)
PNAS 99, 6041-6046
   Abstract »    Full Text »    PDF »
Sprouty2 Inhibits the Ras/MAP Kinase Pathway by Inhibiting the Activation of Raf.
P. Yusoff, D.-H. Lao, S. H. Ong, E. S. M. Wong, J. Lim, T. L. Lo, H. F. Leong, C. W. Fong, and G. R. Guy (2002)
J. Biol. Chem. 277, 3195-3201
   Abstract »    Full Text »    PDF »
Mammalian Sprouty Proteins Inhibit Cell Growth and Differentiation by Preventing Ras Activation.
I. Gross, B. Bassit, M. Benezra, and J. D. Licht (2001)
J. Biol. Chem. 276, 46460-46468
   Abstract »    Full Text »    PDF »
Identification of a Dominant Negative Mutant of Sprouty That Potentiates Fibroblast Growth Factor- but Not Epidermal Growth Factor-induced ERK Activation.
A. Sasaki, T. Taketomi, T. Wakioka, R. Kato, and A. Yoshimura (2001)
J. Biol. Chem. 276, 36804-36808
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882