Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 155 (1): 41-52

Copyright © 2001 by the Rockefeller University Press.


Article

Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

Kathryn J. Mitchell1, Paolo Pinton2,3, Aniko Varadi1, Carlo Tacchetti4, Edward K. Ainscow1, Tullio Pozzan3, Rosario Rizzuto2, and Guy A. Rutter1

1 Departments of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
2 Experimental and Diagnostic Medicine Section of General Pathology, University of Ferrara, 44100 Ferrara, Italy
3 Biomedical Sciences and CNR Center for Study of Biological Membranes, University of Padova, 35121 Padova 17, Italy
4 Experimental Medicine, University of Genova Medical School, 16132 Genova, Italy

Address correspondence to Guy Rutter, Department of Biochemistry, University of Bristol, BS8 1TD Bristol, UK. Tel.: (44) 117-954-6401. Fax: (44) 117-928-8274. E-mail: g.a.rutter{at}bris.ac.uk

Abstract: The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet ß-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis.

Key Words: calcium; secretory vesicle; insulin; ryanodine receptor; aequorin

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Use of Aequorin and Its Variants for Ca2+ Measurements.
V. Granatiero, M. Patron, A. Tosatto, G. Merli, and R. Rizzuto (2014)
Cold Spring Harb Protoc 2014, pdb.top066118
   Abstract »    Full Text »    PDF »
Using Targeted Variants of Aequorin to Measure Ca2+ Levels in Intracellular Organelles.
V. Granatiero, M. Patron, A. Tosatto, G. Merli, and R. Rizzuto (2014)
Cold Spring Harb Protoc 2014, pdb.prot072843
   Abstract »    Full Text »    PDF »
Heterogeneity of Ca2+ handling among and within Golgi compartments.
A. K. C. Wong, P. Capitanio, V. Lissandron, M. Bortolozzi, T. Pozzan, and P. Pizzo (2013)
J Mol Cell Biol 5, 266-276
   Abstract »    Full Text »    PDF »
Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe.
E. J. Dickson, J. G. Duman, M. W. Moody, L. Chen, and B. Hille (2012)
PNAS 109, E3539-E3548
   Abstract »    Full Text »    PDF »
STIM1 and STIM2 Are Located in the Acidic Ca2+ Stores and Associates with Orai1 upon Depletion of the Acidic Stores in Human Platelets.
H. Zbidi, I. Jardin, G. E. Woodard, J. J. Lopez, A. Berna-Erro, G. M. Salido, and J. A. Rosado (2011)
J. Biol. Chem. 286, 12257-12270
   Abstract »    Full Text »    PDF »
Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells.
S. H. Yoo (2010)
FASEB J 24, 653-664
   Abstract »    Full Text »    PDF »
Functional Ryanodine Receptors in the Plasma Membrane of RINm5F Pancreatic {beta}-Cells.
C. Rosker, G. Meur, E. J. A. Taylor, and C. W. Taylor (2009)
J. Biol. Chem. 284, 5186-5194
   Abstract »    Full Text »    PDF »
Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and {beta}-Cell Death.
D. S. Luciani, K. S. Gwiazda, T.-L. B. Yang, T. B. Kalynyak, Y. Bychkivska, M. H.Z. Frey, K. D. Jeffrey, A. V. Sampaio, T. M. Underhill, and J. D. Johnson (2009)
Diabetes 58, 422-432
   Abstract »    Full Text »    PDF »
Initiation and execution of lipotoxic ER stress in pancreatic {beta}-cells.
D. A. Cunha, P. Hekerman, L. Ladriere, A. Bazarra-Castro, F. Ortis, M. C. Wakeham, F. Moore, J. Rasschaert, A. K. Cardozo, E. Bellomo, et al. (2008)
J. Cell Sci. 121, 2308-2318
   Abstract »    Full Text »    PDF »
Peroxisomes as Novel Players in Cell Calcium Homeostasis.
F. M. Lasorsa, P. Pinton, L. Palmieri, P. Scarcia, H. Rottensteiner, R. Rizzuto, and F. Palmieri (2008)
J. Biol. Chem. 283, 15300-15308
   Abstract »    Full Text »    PDF »
Calcium Transport Mechanisms of PC12 Cells.
J. G. Duman, L. Chen, and B. Hille (2008)
J. Gen. Physiol. 131, 307-323
   Abstract »    Full Text »    PDF »
Ryanodine receptor interaction with the SNARE-associated protein snapin.
S. Zissimopoulos, D. J. West, A. J. Williams, and F. A. Lai (2006)
J. Cell Sci. 119, 2386-2397
   Abstract »    Full Text »    PDF »
NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area.
J. V. Gerasimenko, M. Sherwood, A. V. Tepikin, O. H. Petersen, and O. V. Gerasimenko (2006)
J. Cell Sci. 119, 226-238
   Abstract »    Full Text »    PDF »
Microdomains of Intracellular Ca2+: Molecular Determinants and Functional Consequences.
R. Rizzuto and T. Pozzan (2006)
Physiol Rev 86, 369-408
   Abstract »    Full Text »    PDF »
Astrocytic Glutamate Release-Induced Transient Depolarization and Epileptiform Discharges in Hippocampal CA1 Pyramidal Neurons.
N. Kang, J. Xu, Q. Xu, M. Nedergaard, and J. Kang (2005)
J Neurophysiol 94, 4121-4130
   Abstract »    Full Text »    PDF »
SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment.
M. Iezzi, S. Theander, R. Janz, C. Loze, and C. B. Wollheim (2005)
J. Cell Sci. 118, 5647-5660
   Abstract »    Full Text »    PDF »
A Dynamic Pool of Calcium in Catecholamine Storage Vesicles: EXPLORATION IN LIVING CELLS BY A NOVEL VESICLE-TARGETED CHROMOGRANIN A-AEQUORIN CHIMERIC PHOTOPROTEIN.
N. R. Mahapatra, M. Mahata, P. P. Hazra, P. M. McDonough, D. T. O'Connor, and S. K. Mahata (2004)
J. Biol. Chem. 279, 51107-51121
   Abstract »    Full Text »    PDF »
RyR2 and Calpain-10 Delineate a Novel Apoptosis Pathway in Pancreatic Islets.
J. D. Johnson, Z. Han, K. Otani, H. Ye, Y. Zhang, H. Wu, Y. Horikawa, S. Misler, G. I. Bell, and K. S. Polonsky (2004)
J. Biol. Chem. 279, 24794-24802
   Abstract »    Full Text »    PDF »
Role for Plasma Membrane-Related Ca2+-ATPase-1 (ATP2C1) in Pancreatic {beta}-Cell Ca2+ Homeostasis Revealed by RNA Silencing.
K. J. Mitchell, T. Tsuboi, and G. A. Rutter (2004)
Diabetes 53, 393-400
   Abstract »    Full Text »
Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic {beta}-cells.
K. Eto, T. Yamashita, K. Hirose, Y. Tsubamoto, E. K. Ainscow, G. A. Rutter, S. Kimura, M. Noda, M. Iino, and T. Kadowaki (2003)
Am J Physiol Endocrinol Metab 285, E262-E271
   Abstract »    Full Text »    PDF »
Ryanodine Receptor Type I and Nicotinic Acid Adenine Dinucleotide Phosphate Receptors Mediate Ca2+ Release from Insulin-containing Vesicles in Living Pancreatic {beta}-Cells (MIN6).
K. J. Mitchell, F. A. Lai, and G. A. Rutter (2003)
J. Biol. Chem. 278, 11057-11064
   Abstract »    Full Text »    PDF »
PAC1 Receptor Activation by PACAP-38 Mediates Ca2+ Release from a cAMP-dependent Pool in Human Fetal Adrenal Gland Chromaffin Cells.
M. D. Payet, L. Bilodeau, L. Breault, A. Fournier, L. Yon, H. Vaudry, and N. Gallo-Payet (2003)
J. Biol. Chem. 278, 1663-1670
   Abstract »    Full Text »    PDF »
Amplification of exocytosis by Ca2+-induced Ca2+ release in INS-1 pancreatic {beta} cells.
G. Kang and G. G Holz (2003)
J. Physiol. 546, 175-189
   Abstract »    Full Text »    PDF »
Recent Advances in the Okamoto Model: The CD38-Cyclic ADP-Ribose Signal System and the Regenerating Gene Protein (Reg)-Reg Receptor System in {beta}-Cells.
H. Okamoto and S. Takasawa (2002)
Diabetes 51, S462-473
   Abstract »    Full Text »    PDF »
Dynamics of Glucose-induced Membrane Recruitment of Protein Kinase C {beta}II in Living Pancreatic Islet {beta}-Cells.
P. Pinton, T. Tsuboi, E. K. Ainscow, T. Pozzan, R. Rizzuto, and G. A. Rutter (2002)
J. Biol. Chem. 277, 37702-37710
   Abstract »    Full Text »    PDF »
Selective Effects of Calcium Chelators on Anterograde and Retrograde Protein Transport in the Cell.
J.-L. Chen, J. P. Ahluwalia, and M. Stamnes (2002)
J. Biol. Chem. 277, 35682-35687
   Abstract »    Full Text »    PDF »
The Ryanodine Receptor Calcium Channel of {beta}-Cells: Molecular Regulation and Physiological Significance.
M. S. Islam (2002)
Diabetes 51, 1299-1309
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882