Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 155 (3): 415-426

Copyright © 2001 by the Rockefeller University Press.


Article

Keratin attenuates tumor necrosis factor–induced cytotoxicity through association with TRADD

Hiroyasu Inada1, Ichiro Izawa1, Miwako Nishizawa1, Eriko Fujita4, Tohru Kiyono2, Toshitada Takahashi3, Takashi Momoi4, and Masaki Inagaki1

1 Division of Biochemistry, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
2 Division of Virology, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
3 Division of Immunology, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
4 Division of Development and Differentiation, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan

Address correspondence to Dr. Masaki Inagaki, Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusaku, Nagoya, Aichi 464-8681, Japan. Tel.: 81-52-762-6111 (ext. 7020). Fax: 81-52-763-5233. E-mail: minagaki{at}aichi-cc.jp

Abstract: Keratin 8 and 18 (K8/18) are the major components of intermediate filament (IF) proteins of simple or single-layered epithelia. Recent data show that normal and malignant epithelial cells deficient in K8/18 are nearly 100 times more sensitive to tumor necrosis factor (TNF)–induced cell death. We have now identified human TNF receptor type 1 (TNFR1)–associated death domain protein (TRADD) to be the K18-interacting protein. Among IF proteins tested in two-hybrid systems, TRADD specifically bound K18 and K14, type I (acidic) keratins. The COOH-terminal region of TRADD interacted with the coil Ia of the rod domain of K18. Endogenous TRADD coimmunoprecipitated with K18, and colocalized with K8/18 filaments in human mammary epithelial cells. Overexpression of the NH2 terminus (amino acids 1–270) of K18 containing the TRADD-binding domain as well as overexpression of K8/18 in SW13 cells, which are devoid of keratins, rendered the cells more resistant to killing by TNF. We also showed that overexpressed NH2 termini of K18 and K8/18 were associated with endogenous TRADD in SW13 cells, resulting in the inhibition of caspase-8 activation. These results indicate that K18 may sequester TRADD to attenuate interactions between TRADD and activated TNFR1 and moderate TNF-induced apoptosis in simple epithelial cells.

Key Words: apoptosis; keratin 8; keratin 18; TNF; TRADD

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation.
A.-M. Fortier, E. Asselin, and M. Cadrin (2013)
J. Biol. Chem. 288, 11555-11571
   Abstract »    Full Text »    PDF »
Gene expression profiling of gastrocnemius of "minimuscle" mice.
J. G. Burniston, T. H. Meek, S. N. Pandey, G. Broitman-Maduro, M. F. Maduro, A. M. Bronikowski, T. Garland Jr., and Y.-W. Chen (2013)
Physiol Genomics 45, 228-236
   Abstract »    Full Text »    PDF »
Keratin K18 Increases Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Surface Expression by Binding to Its C-terminal Hydrophobic Patch.
Y. Duan, Y. Sun, F. Zhang, W. K. Zhang, D. Wang, Y. Wang, X. Cao, W. Hu, C. Xie, J. Cuppoletti, et al. (2012)
J. Biol. Chem. 287, 40547-40559
   Abstract »    Full Text »    PDF »
The Enteropathogenic Escherichia coli-Secreted Protein EspZ Inhibits Host Cell Apoptosis.
J. L. Roxas, J. S. Wilbur, X. Zhang, G. Martinez, G. Vedantam, and V. K. Viswanathan (2012)
Infect. Immun. 80, 3850-3857
   Abstract »    Full Text »    PDF »
Biological Functions of Cytokeratin 18 in Cancer.
Y.-R. Weng, Y. Cui, and J.-Y. Fang (2012)
Mol. Cancer Res. 10, 485-493
   Abstract »    Full Text »    PDF »
Cytokeratin 8 Is Expressed in Human Corneoconjunctival Epithelium, Particularly in Limbal Epithelial Cells.
S. Merjava, K. Brejchova, A. Vernon, J. T. Daniels, and K. Jirsova (2011)
Invest. Ophthalmol. Vis. Sci. 52, 787-794
   Abstract »    Full Text »    PDF »
Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme.
Y.-H. Chou, W.-L. Kuo, M. R. Rosner, W.-J. Tang, and R. D. Goldman (2009)
FASEB J 23, 3734-3742
   Abstract »    Full Text »    PDF »
Activation of Apoptosis by 1-Hydroxy-5,7-Dimethoxy-2-Naphthalene-Carboxaldehyde, a Novel Compound from Aegle marmelos.
D. Subramaniam, P. Giridharan, N. Murmu, N. P. Shankaranarayanan, R. May, C. W. Houchen, R. P. Ramanujam, A. Balakrishnan, R. A. Vishwakarma, and S. Anant (2008)
Cancer Res. 68, 8573-8581
   Abstract »    Full Text »    PDF »
The keratin-binding protein Albatross regulates polarization of epithelial cells.
M. Sugimoto, A. Inoko, T. Shiromizu, M. Nakayama, P. Zou, S. Yonemura, Y. Hayashi, I. Izawa, M. Sasoh, Y. Uji, et al. (2008)
J. Cell Biol. 183, 19-28
   Abstract »    Full Text »    PDF »
eIF3k regulates apoptosis in epithelial cells by releasing caspase 3 from keratin-containing inclusions.
Y.-M. Lin, Y.-R. Chen, J.-R. Lin, W.-J. Wang, A. Inoko, M. Inagaki, Y.-C. Wu, and R.-H. Chen (2008)
J. Cell Sci. 121, 2382-2393
   Abstract »    Full Text »    PDF »
Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm.
S. Kim and P. A. Coulombe (2007)
Genes & Dev. 21, 1581-1597
   Abstract »    Full Text »    PDF »
Reply to: The ends of a conundrum?.
J. Chen, X. Cheng, M. Merched-Sauvage, C. Caulin, D. R. Roop, and P. J. Koch (2007)
J. Cell Sci. 120, 1147-1148
   Full Text »    PDF »
Independent Regulation of Apical and Basolateral Drug Transporter Expression and Function in Placental Trophoblasts by Cytokines, Steroids, and Growth Factors.
D. A. Evseenko, J. W. Paxton, and J. A. Keelan (2007)
Drug Metab. Dispos. 35, 595-601
   Abstract »    Full Text »    PDF »
The Possible Role of Cytokeratin 8 in Cadmium-Induced Adaptation and Carcinogenesis.
A. T.Y. Lau and J.-F. Chiu (2007)
Cancer Res. 67, 2107-2113
   Abstract »    Full Text »    PDF »
Intermediate Filaments as Signaling Platforms.
H.-M. Pallari and J. E. Eriksson (2006)
Sci. STKE 2006, pe53
   Abstract »    Full Text »    PDF »
An unexpected role for keratin 10 end domains in susceptibility to skin cancer.
J. Chen, X. Cheng, M. Merched-Sauvage, C. Caulin, D. R. Roop, and P. J. Koch (2006)
J. Cell Sci. 119, 5067-5076
   Abstract »    Full Text »    PDF »
Keratin 17 modulates hair follicle cycling in a TNF{alpha}-dependent fashion..
X. Tong and P. A. Coulombe (2006)
Genes & Dev. 20, 1353-1364
   Abstract »    Full Text »    PDF »
Tracking of microinjected DNA in live cells reveals the intracellular behavior and elimination of extrachromosomal genetic material.
N. Shimizu, F. Kamezaki, and S. Shigematsu (2005)
Nucleic Acids Res. 33, 6296-6307
   Abstract »    Full Text »    PDF »
Identification of trichoplein, a novel keratin filament-binding protein.
M. Nishizawa, I. Izawa, A. Inoko, Y. Hayashi, K.-i. Nagata, T. Yokoyama, J. Usukura, and M. Inagaki (2005)
J. Cell Sci. 118, 1081-1090
   Abstract »    Full Text »    PDF »
Keratins Modulate c-Flip/Extracellular Signal-Regulated Kinase 1 and 2 Antiapoptotic Signaling in Simple Epithelial Cells.
S. Gilbert, A. Loranger, and N. Marceau (2004)
Mol. Cell. Biol. 24, 7072-7081
   Abstract »    Full Text »    PDF »
Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients.
D. W. Owens, N. J. Wilson, A. J. M. Hill, E. L. Rugg, R. M. Porter, A. M. Hutcheson, R. A. Quinlan, D. van Heel, M. Parkes, D. P. Jewell, et al. (2004)
J. Cell Sci. 117, 1989-1999
   Abstract »    Full Text »    PDF »
A frequent keratin 8 p.L227L polymorphism, but no point mutations in keratin 8 and 18 genes, in patients with various liver disorders.
M Hesse, T Berg, B Wiedenmann, U Spengler, R P Woitas, and T M Magin (2004)
J. Med. Genet. 41, e42
   Full Text »    PDF »
Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments.
J. E. Eriksson, T. He, A. V. Trejo-Skalli, A.-S. Harmala-Brasken, J. Hellman, Y.-H. Chou, and R. D. Goldman (2004)
J. Cell Sci. 117, 919-932
   Abstract »    Full Text »    PDF »
An Autocrine/Paracrine Loop Linking Keratin 14 Aggregates to Tumor Necrosis Factor {alpha}-mediated Cytotoxicity in a Keratinocyte Model of Epidermolysis Bullosa Simplex.
K. Yoneda, T. Furukawa, Y.-J. Zheng, T. Momoi, I. Izawa, M. Inagaki, M. Manabe, and N. Inagaki (2004)
J. Biol. Chem. 279, 7296-7303
   Abstract »    Full Text »    PDF »
Functional Analysis of the Human Papillomavirus Type 16 E1{wedge}E4 Protein Provides a Mechanism for In Vivo and In Vitro Keratin Filament Reorganization.
Q. Wang, H. Griffin, S. Southern, D. Jackson, A. Martin, P. McIntosh, C. Davy, P. J. Masterson, P. A. Walker, P. Laskey, et al. (2004)
J. Virol. 78, 821-833
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor Receptor-associated Factor (TRAF) 1 Regulates CD40-induced TRAF2-mediated NF-{kappa}B Activation.
M. Fotin-Mleczek, F. Henkler, A. Hausser, H. Glauner, D. Samel, A. Graness, P. Scheurich, D. Mauri, and H. Wajant (2004)
J. Biol. Chem. 279, 677-685
   Abstract »    Full Text »    PDF »
Chlamydia-Infected Cells Continue To Undergo Mitosis and Resist Induction of Apoptosis.
W. Greene, Y. Xiao, Y. Huang, G. McClarty, and G. Zhong (2004)
Infect. Immun. 72, 451-460
   Abstract »    Full Text »    PDF »
An Intact Intermediate Filament Network Is Required for Collateral Sprouting of Small Diameter Nerve Fibers.
T. Belecky-Adams, M. Holmes, Y. Shan, C. S. Tedesco, C. Mascari, A. Kaul, D. C. Wight, R. E. Morris, M. Sussman, J. Diamond, et al. (2003)
J. Neurosci. 23, 9312-9319
   Abstract »    Full Text »    PDF »
Caspase-mediated Cleavage Converts the Tumor Necrosis Factor (TNF) Receptor-associated Factor (TRAF)-1 from a Selective Modulator of TNF Receptor Signaling to a General Inhibitor of NF-{kappa}B Activation.
F. Henkler, B. Baumann, M. Fotin-Mleczek, M. Weingartner, R. Schwenzer, N. Peters, A. Graness, T. Wirth, P. Scheurich, J. A. Schmid, et al. (2003)
J. Biol. Chem. 278, 29216-29230
   Abstract »    Full Text »    PDF »
Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia.
E. A. Morgan, S. B. Nguyen, V. Scott, and H. S. Stadler (2003)
Development 130, 3095-3109
   Abstract »    Full Text »    PDF »
Keratin 8 protection of placental barrier function.
D. Jaquemar, S. Kupriyanov, M. Wankell, J. Avis, K. Benirschke, H. Baribault, and R. G. Oshima (2003)
J. Cell Biol. 161, 749-756
   Abstract »    Full Text »    PDF »
Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies.
N.-O. Ku, J. M. Darling, S. M. Krams, C. O. Esquivel, E. B. Keeffe, R. K. Sibley, Y. M. Lee, T. L. Wright, and M. B. Omary (2003)
PNAS 100, 6063-6068
   Abstract »    Full Text »    PDF »
Impaired NF-kappa B Activation and Increased Production of Tumor Necrosis Factor alpha in Transgenic Mice Expressing Keratin K10 in the Basal Layer of the Epidermis.
M. Santos, P. Perez, C. Segrelles, S. Ruiz, J. L. Jorcano, and J. M. Paramio (2003)
J. Biol. Chem. 278, 13422-13430
   Abstract »    Full Text »    PDF »
Caspase Proteolysis of Desmin Produces a Dominant-negative Inhibitor of Intermediate Filaments and Promotes Apoptosis.
F. Chen, R. Chang, M. Trivedi, Y. Capetanaki, and V. L. Cryns (2003)
J. Biol. Chem. 278, 6848-6853
   Abstract »    Full Text »    PDF »
The PAAD/PYRIN-Family Protein ASC Is a Dual Regulator of a Conserved Step in Nuclear Factor {kappa}B Activation Pathways.
C. Stehlik, L. Fiorentino, A. Dorfleutner, J.-M. Bruey, E. M. Ariza, J. Sagara, and J. C. Reed (2002)
J. Exp. Med. 196, 1605-1615
   Abstract »    Full Text »    PDF »
Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases.
P. Strnad, R. Windoffer, and R. E. Leube (2002)
J. Cell Sci. 115, 4133-4148
   Abstract »    Full Text »    PDF »
DEDD regulates degradation of intermediate filaments during apoptosis.
J. C. Lee, O. Schickling, A. H. Stegh, R. G. Oshima, D. Dinsdale, G. M. Cohen, and M. E. Peter (2002)
J. Cell Biol. 158, 1051-1066
   Abstract »    Full Text »    PDF »
Severe Abnormalities in the Oral Mucosa Induced by Suprabasal Expression of Epidermal Keratin K10 in Transgenic Mice.
M. Santos, A. Bravo, C. Lopez, J. M. Paramio, and J. L. Jorcano (2002)
J. Biol. Chem. 277, 35371-35377
   Abstract »    Full Text »    PDF »
Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland.
G. Li, G. W. Robinson, R. Lesche, H. Martinez-Diaz, Z. Jiang, N. Rozengurt, K.-U. Wagner, D.-C. Wu, T. F. Lane, X. Liu, et al. (2002)
Development 129, 4159-4170
   Abstract »    Full Text »    PDF »
Nuclear and cytoplasmic shuttling of TRADD induces apoptosis via different mechanisms.
M. Morgan, J. Thorburn, P. P. Pandolfi, and A. Thorburn (2002)
J. Cell Biol. 157, 975-984
   Abstract »    Full Text »    PDF »
The Expression of Keratin K10 in the Basal Layer of the Epidermis Inhibits Cell Proliferation and Prevents Skin Tumorigenesis.
M. Santos, J. M. Paramio, A. Bravo, A. Ramirez, and J. L. Jorcano (2002)
J. Biol. Chem. 277, 19122-19130
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882