Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 156 (1): 125-136

Copyright © 2002 by the Rockefeller University Press.


Article

Mechanisms through which Sos-1 coordinates the activation of Ras and Rac

Metello Innocenti1, Pierluigi Tenca1, Emanuela Frittoli1, Mario Faretta1, Arianna Tocchetti1, Pier Paolo Di Fiore1,2,3, and Giorgio Scita1

1 Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141 Milan, Italy
2 IFOM, The FIRC Institute for Molecular Oncology, 20134 Milan, Italy
3 Dipartimento di Medicina Chirurgia ed Odontoiatria, Universita' degli Studi di Milano, 20122 Milan, Italy

Address correspondence to Giorgio Scita, Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141 Milano, Italy. Tel.: 39-0257489825. Fax: 39-0257489851. E-mail: gscita{at}ieo.it

Abstract: Signaling from receptor tyrosine kinases (RTKs)* requires the sequential activation of the small GTPases Ras and Rac. Son of sevenless (Sos-1), a bifunctional guanine nucleotide exchange factor (GEF), activates Ras in vivo and displays Rac-GEF activity in vitro, when engaged in a tricomplex with Eps8 and E3b1–Abi-1, a RTK substrate and an adaptor protein, respectively. A mechanistic understanding of how Sos-1 coordinates Ras and Rac activity is, however, still missing. Here, we demonstrate that (a) Sos-1, E3b1, and Eps8 assemble into a tricomplex in vivo under physiological conditions; (b) Grb2 and E3b1 bind through their SH3 domains to the same binding site on Sos-1, thus determining the formation of either a Sos-1–Grb2 (S/G) or a Sos-1–E3b1–Eps8 (S/E/E8) complex, endowed with Ras- and Rac-specific GEF activities, respectively; (c) the Sos-1–Grb2 complex is disrupted upon RTKs activation, whereas the S/E/E8 complex is not; and (d) in keeping with the previous result, the activation of Ras by growth factors is short-lived, whereas the activation of Rac is sustained. Thus, the involvement of Sos-1 at two distinct and differentially regulated steps of the signaling cascade allows for coordinated activation of Ras and Rac and different duration of their signaling within the cell.

Key Words: Sos-1; Eps8; E3b1; Ras; Rac


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Activity-Dependent Spine Morphogenesis: A Role for the Actin-Capping Protein Eps8.
E. Stamatakou, A. Marzo, A. Gibb, and P. C. Salinas (2013)
J. Neurosci. 33, 2661-2670
   Abstract »    Full Text »    PDF »
Regulation of Small GTPases by GEFs, GAPs, and GDIs.
J. Cherfils and M. Zeghouf (2013)
Physiol Rev 93, 269-309
   Abstract »    Full Text »    PDF »
CIIA functions as a molecular switch for the Rac1-specific GEF activity of SOS1.
H. S. Hwang, S. G. Hwang, J.-H. Cho, J. S. Chae, K. W. Yoon, S.-G. Cho, and E.-J. Choi (2011)
J. Cell Biol. 195, 377-386
   Abstract »    Full Text »    PDF »
c-Jun N-terminal Kinase 2 (JNK2) Enhances Cell Migration through Epidermal Growth Factor Substrate 8 (EPS8).
S. Mitra, J.-S. Lee, M. Cantrell, and C. L. Van Den Berg (2011)
J. Biol. Chem. 286, 15287-15297
   Abstract »    Full Text »    PDF »
Mammalian Son of Sevenless Guanine Nucleotide Exchange Factors: Old Concepts and New Perspectives.
J. M. Rojas, J. L. Oliva, and E. Santos (2011)
Genes & Cancer 2, 298-305
   Abstract »    Full Text »    PDF »
Induction of Nonapoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6.
H. Bhanot, A. M. Young, J. H. Overmeyer, and W. A. Maltese (2010)
Mol. Cancer Res. 8, 1358-1374
   Abstract »    Full Text »    PDF »
The Molecular Basis of Phospholipase D2-Induced Chemotaxis: Elucidation of Differential Pathways in Macrophages and Fibroblasts.
K. Knapek, K. Frondorf, J. Post, S. Short, D. Cox, and J. Gomez-Cambronero (2010)
Mol. Cell. Biol. 30, 4492-4506
   Abstract »    Full Text »    PDF »
Spatial cycles in G-protein crowd control.
N. Vartak and P. Bastiaens (2010)
EMBO J. 29, 2689-2699
   Abstract »    Full Text »    PDF »
The Adam family metalloprotease Kuzbanian regulates the cleavage of the roundabout receptor to control axon repulsion at the midline.
H. A. Coleman, J.-P. Labrador, R. K. Chance, and G. J. Bashaw (2010)
Development 137, 2417-2426
   Abstract »    Full Text »    PDF »
Abl interactor 1 regulates Src-Id1-matrix metalloproteinase 9 axis and is required for invadopodia formation, extracellular matrix degradation and tumor growth of human breast cancer cells.
X. Sun, C. Li, C. Zhuang, W. C. Gilmore, E. Cobos, Y. Tao, and Z. Dai (2009)
Carcinogenesis 30, 2109-2116
   Abstract »    Full Text »    PDF »
Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals.
S. Antoku and B. J. Mayer (2009)
J. Cell Sci. 122, 4228-4238
   Abstract »    Full Text »    PDF »
The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1.
K. L. Schmidt, N. Marcus-Gueret, A. Adeleye, J. Webber, D. Baillie, and E. G. Stringham (2009)
Development 136, 563-574
   Abstract »    Full Text »    PDF »
Role for EPS8 in squamous carcinogenesis.
H. Wang, V. Patel, H. Miyazaki, J.S. Gutkind, and W.A. Yeudall (2009)
Carcinogenesis 30, 165-174
   Abstract »    Full Text »    PDF »
Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo.
W. Yu, X. Sun, N. Clough, E. Cobos, Y. Tao, and Z. Dai (2008)
Carcinogenesis 29, 1717-1724
   Abstract »    Full Text »    PDF »
Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF.
R. E. Itoh, E. Kiyokawa, K. Aoki, T. Nishioka, T. Akiyama, and M. Matsuda (2008)
J. Cell Sci. 121, 2635-2642
   Abstract »    Full Text »    PDF »
Abelson interacting protein 1 (Abi-1) is essential for dendrite morphogenesis and synapse formation.
C. Proepper, S. Johannsen, S. Liebau, J. Dahl, B. Vaida, J. Bockmann, M. R. Kreutz, E. D. Gundelfinger, and T. M. Boeckers (2007)
EMBO J. 26, 1397-1409
   Abstract »    Full Text »    PDF »
Hereditary Gingival Fibromatosis: Characteristics and Novel Putative Pathogenic Mechanisms.
L. Hakkinen and A. Csiszar (2007)
Journal of Dental Research 86, 25-34
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase C2beta Regulates Cytoskeletal Organization and Cell Migration via Rac-dependent Mechanisms.
R. M. Katso, O. E. Pardo, A. Palamidessi, C. M. Franz, M. Marinov, A. De Laurentiis, J. Downward, G. Scita, A. J. Ridley, M. D. Waterfield, et al. (2006)
Mol. Biol. Cell 17, 3729-3744
   Abstract »    Full Text »    PDF »
Grb2 Is a Negative Modulator of the Intrinsic Ras-GEF Activity of hSos1.
N. Zarich, J. L. Oliva, N. Martinez, R. Jorge, A. Ballester, S. Gutierrez-Eisman, S. Garcia-Vargas, and J. M. Rojas (2006)
Mol. Biol. Cell 17, 3591-3597
   Abstract »    Full Text »    PDF »
Fibrillar beta-Amyloid-stimulated Intracellular Signaling Cascades Require Vav for Induction of Respiratory Burst and Phagocytosis in Monocytes and Microglia.
B. Wilkinson, J. Koenigsknecht-Talboo, C. Grommes, C. Y. D. Lee, and G. Landreth (2006)
J. Biol. Chem. 281, 20842-20850
   Abstract »    Full Text »    PDF »
Sos-mediated activation of rac1 by p66shc.
F. A. Khanday, L. Santhanam, K. Kasuno, T. Yamamori, A. Naqvi, J. DeRicco, A. Bugayenko, I. Mattagajasingh, A. Disanza, G. Scita, et al. (2006)
J. Cell Biol. 172, 817-822
   Abstract »    Full Text »    PDF »
Pure Lipopolysaccharide or Synthetic Lipid A Induces Activation of p21Ras in Primary Macrophages through a Pathway Dependent on Src Family Kinases and PI3K.
M. D. David, C. L. Cochrane, S. K. Duncan, and J. W. Schrader (2005)
J. Immunol. 175, 8236-8241
   Abstract »    Full Text »    PDF »
N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits.
S. Benesch, S. Polo, F. P. L. Lai, K. I. Anderson, T. E. B. Stradal, J. Wehland, and K. Rottner (2005)
J. Cell Sci. 118, 3103-3115
   Abstract »    Full Text »    PDF »
SH3 domain of spectrin participates in the activation of Rac in specialized calpain-induced integrin signaling complexes.
K. Bialkowska, T. C. Saido, and J. E. B. Fox (2005)
J. Cell Sci. 118, 381-395
   Abstract »    Full Text »    PDF »
Abi2-Deficient Mice Exhibit Defective Cell Migration, Aberrant Dendritic Spine Morphogenesis, and Deficits in Learning and Memory.
M. Grove, G. Demyanenko, A. Echarri, P. A. Zipfel, M. E. Quiroz, R. M. Rodriguiz, M. Playford, S. A. Martensen, M. R. Robinson, W. C. Wetsel, et al. (2004)
Mol. Cell. Biol. 24, 10905-10922
   Abstract »    Full Text »    PDF »
Transcription Factor CHF1/Hey2 Regulates Neointimal Formation In Vivo and Vascular Smooth Muscle Proliferation and Migration In Vitro.
Y. Sakata, F. Xiang, Z. Chen, Y. Kiriyama, C. N. Kamei, D. I. Simon, and M. T. Chin (2004)
Arterioscler Thromb Vasc Biol 24, 2069-2074
   Abstract »    Full Text »    PDF »
{kappa}-Opioid Receptor Signals through Src and Focal Adhesion Kinase to Stimulate c-Jun N-Terminal Kinases in Transfected COS-7 Cells and Human Monocytic THP-1 Cells.
A. Y. F. Kam, A. S. L. Chan, and Y. H. Wong (2004)
J. Pharmacol. Exp. Ther. 310, 301-310
   Abstract »    Full Text »    PDF »
A Novel Proteomic Screen for Peptide-Protein Interactions.
W. X. Schulze and M. Mann (2004)
J. Biol. Chem. 279, 10756-10764
   Abstract »    Full Text »    PDF »
The eps8 Family of Proteins Links Growth Factor Stimulation to Actin Reorganization Generating Functional Redundancy in the Ras/Rac Pathway.
N. Offenhauser, A. Borgonovo, A. Disanza, P. Romano, I. Ponzanelli, G. Iannolo, P. P. Di Fiore, and G. Scita (2004)
Mol. Biol. Cell 15, 91-98
   Abstract »    Full Text »    PDF »
Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch.
D. Gregg, F. M. Rauscher, and P. J. Goldschmidt-Clermont (2003)
Am J Physiol Cell Physiol 285, C723-C734
   Abstract »    Full Text »    PDF »
Phosphorylation of the Ras-GRF1 Exchange Factor at Ser916/898 Reveals Activation of Ras Signaling in the Cerebral Cortex.
H. Yang, D. Cooley, J. E. Legakis, Q. Ge, R. Andrade, and R. R. Mattingly (2003)
J. Biol. Chem. 278, 13278-13285
   Abstract »    Full Text »    PDF »
Intersectin 1L Guanine Nucleotide Exchange Activity Is Regulated by Adjacent src Homology 3 Domains That Are Also Involved in Endocytosis.
J. L. Zamanian and R. B. Kelly (2003)
Mol. Biol. Cell 14, 1624-1637
   Abstract »    Full Text »    PDF »
Oncogenic Ras Leads to Rho Activation by Activating the Mitogen-activated Protein Kinase Pathway and Decreasing Rho-GTPase-activating Protein Activity.
J. C. Chen, S. Zhuang, T. H. Nguyen, G. R. Boss, and R. B. Pilz (2003)
J. Biol. Chem. 278, 2807-2818
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1.
M. Innocenti, E. Frittoli, I. Ponzanelli, J. R. Falck, S. M. Brachmann, P. P. Di Fiore, and G. Scita (2003)
J. Cell Biol. 160, 17-23
   Abstract »    Full Text »    PDF »
Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling.
V. De Corte, E. Bruyneel, C. Boucherie, M. Mareel, J. Vandekerckhove, and J. Gettemans (2002)
EMBO J. 21, 6781-6790
   Abstract »    Full Text »    PDF »
Grit, a GTPase-Activating Protein for the Rho Family, Regulates Neurite Extension through Association with the TrkA Receptor and N-Shc and CrkL/Crk Adapter Molecules.
T. Nakamura, M. Komiya, K. Sone, E. Hirose, N. Gotoh, H. Morii, Y. Ohta, and N. Mori (2002)
Mol. Cell. Biol. 22, 8721-8734
   Abstract »    Full Text »    PDF »
The Two Hats of SOS.
A. Nimnual and D. Bar-Sagi (2002)
Sci. STKE 2002, pe36
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882