Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Cell Biol. 156 (2): 349-360

Copyright © 2002 by the Rockefeller University Press.


Article

Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1

Olga Krylyshkina1, Irina Kaverina1, Wolfgang Kranewitter1, Walter Steffen2, Maria C. Alonso3, Robert A. Cross3, and J. Victor Small1

1 Institute of Molecular Biology, Austrian Academy of Sciences, Billrothsthstrasse 11, Salzburg 5020, Austria
2 MRC Muscle and Cell Motility Unit, King's College London, Guy's Campus, London, SE1 1UL, UK
3 Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 OTL, UK

Address correspondence to J.V. Small, Dept. of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, Salzburg 5020, Austria. Tel.: 43-662-63961-11. Fax: 43-662-63961-40. E-mail: jvsmall{at}imb.oeaw.ac.at

Abstract: Recent studies have shown that the targeting of substrate adhesions by microtubules promotes adhesion site disassembly (Kaverina, I., O. Krylyshkina, and J.V. Small. 1999. J. Cell Biol. 146:1033–1043). It was accordingly suggested that microtubules serve to convey a signal to adhesion sites to modulate their turnover. Because microtubule motors would be the most likely candidates for effecting signal transmission, we have investigated the consequence of blocking microtubule motor activity on adhesion site dynamics. Using a function-blocking antibody as well as dynamitin overexpression, we found that a block in dynein–cargo interaction induced no change in adhesion site dynamics in Xenopus fibroblasts. In comparison, a block of kinesin-1 activity, either via microinjection of the SUK-4 antibody or of a kinesin-1 heavy chain construct mutated in the motor domain, induced a dramatic increase in the size and reduction in number of substrate adhesions, mimicking the effect observed after microtubule disruption by nocodazole. Blockage of kinesin activity had no influence on either the ability of microtubules to target substrate adhesions or on microtubule polymerisation dynamics. We conclude that conventional kinesin is not required for the guidance of microtubules into substrate adhesions, but is required for the focal delivery of a component(s) that retards their growth or promotes their disassembly.

Key Words: microtubules; kinesin; actin cytoskeleton; adhesion; signalling


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Intermediate filament-associated cytolinker plectin 1c destabilizes microtubules in keratinocytes.
R. G. Valencia, G. Walko, L. Janda, J. Novacek, E. Mihailovska, S. Reipert, K. Andra-Marobela, and G. Wiche (2013)
Mol. Biol. Cell 24, 768-784
   Abstract »    Full Text »    PDF »
Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions.
C. D. Lynch, A. M. Lazar, T. Iskratsch, X. Zhang, and M. P. Sheetz (2013)
Mol. Biol. Cell 24, 21-30
   Abstract »    Full Text »    PDF »
KIF14 negatively regulates Rap1a-Radil signaling during breast cancer progression.
S. M. Ahmed, B. L. Theriault, M. Uppalapati, C. W. N. Chiu, B. L. Gallie, S. S. Sidhu, and S. Angers (2012)
J. Cell Biol. 199, 951-967
   Abstract »    Full Text »    PDF »
Targeting and transport: How microtubules control focal adhesion dynamics.
S. Stehbens and T. Wittmann (2012)
J. Cell Biol. 198, 481-489
   Abstract »    Full Text »    PDF »
Binding of dynein intermediate chain 2 to paxillin controls focal adhesion dynamics and migration.
C. Rosse, K. Boeckeler, M. Linch, S. Radtke, D. Frith, K. Barnouin, A. S. Morsi, M. Hafezparast, M. Howell, and P. J. Parker (2012)
J. Cell Sci. 125, 3733-3738
   Abstract »    Full Text »    PDF »
Spectraplakins: Master orchestrators of cytoskeletal dynamics.
K. C. Suozzi, X. Wu, and E. Fuchs (2012)
J. Cell Biol. 197, 465-475
   Abstract »    Full Text »    PDF »
ZF21 Protein, a Regulator of the Disassembly of Focal Adhesions and Cancer Metastasis, Contains a Novel Noncanonical Pleckstrin Homology Domain.
M. Nagano, D. Hoshino, S. Koshiba, T. Shuo, N. Koshikawa, T. Tomizawa, F. Hayashi, N. Tochio, T. Harada, T. Akizawa, et al. (2011)
J. Biol. Chem. 286, 31598-31609
   Abstract »    Full Text »    PDF »
Siva1 suppresses epithelial-mesenchymal transition and metastasis of tumor cells by inhibiting stathmin and stabilizing microtubules.
N. Li, P. Jiang, W. Du, Z. Wu, C. Li, M. Qiao, X. Yang, and M. Wu (2011)
PNAS 108, 12851-12856
   Abstract »    Full Text »    PDF »
Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions.
C. D. Lynch, N. C. Gauthier, N. Biais, A. M. Lazar, P. Roca-Cusachs, C.-H. Yu, and M. P. Sheetz (2011)
Mol. Biol. Cell 22, 1263-1273
   Abstract »    Full Text »    PDF »
Kinectin-mediated endoplasmic reticulum dynamics supports focal adhesion growth in the cellular lamella.
X. Zhang, Y. H. Tee, J. K. Heng, Y. Zhu, X. Hu, F. Margadant, C. Ballestrem, A. Bershadsky, G. Griffiths, and H. Yu (2010)
J. Cell Sci. 123, 3901-3912
   Abstract »    Full Text »    PDF »
Methods for Expressing and Analyzing GFP-Tubulin and GFP-Microtubule-Associated Proteins.
H. V. Goodson, J. S. Dzurisin, and P. Wadsworth (2010)
Cold Spring Harb Protoc 2010, pdb.top85
   Abstract »    Full Text »    PDF »
ZF21 Protein Regulates Cell Adhesion and Motility.
M. Nagano, D. Hoshino, T. Sakamoto, N. Kawasaki, N. Koshikawa, and M. Seiki (2010)
J. Biol. Chem. 285, 21013-21022
   Abstract »    Full Text »    PDF »
Kinesin-1 Regulates Microtubule Dynamics via a c-Jun N-terminal Kinase-dependent Mechanism.
V. Daire, J. Giustiniani, I. Leroy-Gori, M. Quesnoit, S. Drevensek, A. Dimitrov, F. Perez, and C. Pous (2009)
J. Biol. Chem. 284, 31992-32001
   Abstract »    Full Text »    PDF »
Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics.
N. Hirokawa and Y. Noda (2008)
Physiol Rev 88, 1089-1118
   Abstract »    Full Text »    PDF »
Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells.
S. Dunn, E. E. Morrison, T. B. Liverpool, C. Molina-Paris, R. A. Cross, M. C. Alonso, and M. Peckham (2008)
J. Cell Sci. 121, 1085-1095
   Abstract »    Full Text »    PDF »
HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions.
A. D.-A. Tran, T. P. Marmo, A. A. Salam, S. Che, E. Finkelstein, R. Kabarriti, H. S. Xenias, R. Mazitschek, C. Hubbert, Y. Kawaguchi, et al. (2007)
J. Cell Sci. 120, 1469-1479
   Abstract »    Full Text »    PDF »
Microtubule-targeting-dependent reorganization of filopodia.
J. M. Schober, Y. A. Komarova, O. Y. Chaga, A. Akhmanova, and G. G. Borisy (2007)
J. Cell Sci. 120, 1235-1244
   Abstract »    Full Text »    PDF »
The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages.
P. Kopp, R. Lammers, M. Aepfelbacher, G. Woehlke, T. Rudel, N. Machuy, W. Steffen, and S. Linder (2006)
Mol. Biol. Cell 17, 2811-2823
   Abstract »    Full Text »    PDF »
Signaling Mechanisms Regulating Endothelial Permeability.
D. Mehta and A. B. Malik (2006)
Physiol Rev 86, 279-367
   Abstract »    Full Text »    PDF »
Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1.
A. Varadi, L. I. Johnson-Cadwell, V. Cirulli, Y. Yoon, V. J. Allan, and G. A. Rutter (2004)
J. Cell Sci. 117, 4389-4400
   Abstract »    Full Text »    PDF »
Signaling in Leukocyte Transendothelial Migration.
J. D. van Buul and P. L. Hordijk (2004)
Arterioscler Thromb Vasc Biol 24, 824-833
   Abstract »    Full Text »
A Novel Actin-bundling Kinesin-related Protein from Dictyostelium discoideum.
S. Iwai, A. Ishiji, I. Mabuchi, and K. Sutoh (2004)
J. Biol. Chem. 279, 4696-4704
   Abstract »    Full Text »    PDF »
What kinesin does at roadblocks: the coordination mechanism for molecular walking.
I. M.-T. Crevel, M. Nyitrai, M. C. Alonso, S. Weiss, M. A. Geeves, and R. A. Cross (2004)
EMBO J. 23, 23-32
   Abstract »    Full Text »    PDF »
A role for cytoplasmic dynein and LIS1 in directed cell movement.
D. L. Dujardin, L. E. Barnhart, S. A. Stehman, E. R. Gomes, G. G. Gundersen, and R. B. Vallee (2003)
J. Cell Biol. 163, 1205-1211
   Abstract »    Full Text »    PDF »
Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport.
C. C. Hoogenraad, P. Wulf, N. Schiefermeier, T. Stepanova, N. Galjart, J. V. Small, F. Grosveld, C. I. de Zeeuw, and A. Akhmanova (2003)
EMBO J. 22, 6004-6015
   Abstract »    Full Text »    PDF »
Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic {beta}-cells.
A. Varadi, E. K. Ainscow, V. J. Allan, and G. A. Rutter (2002)
J. Cell Sci. 115, 4177-4189
   Abstract »    Full Text »    PDF »
Association of the Ste20-like Kinase (SLK) with the Microtubule: ROLE IN Rac1-MEDIATED REGULATION OF ACTIN DYNAMICS DURING CELL ADHESION AND SPREADING.
S. Wagner, T. A. Flood, P. O'Reilly, K. Hume, and L. A. Sabourin (2002)
J. Biol. Chem. 277, 37685-37692
   Abstract »    Full Text »    PDF »
Regulation and Functional Insights in Cellular Polarity Madrid, Spain June 3-5, 2002.
I. Mellman and A. Ridley (2002)
J. Cell Biol. 158, 12-16
   Full Text »    PDF »
Microtubule-Actin Cross-talk at Focal Adhesions.
A. F. Palazzo and G. G. Gundersen (2002)
Sci. STKE 2002, pe31
   Abstract »    Full Text »    PDF »
Tensile stress stimulates microtubule outgrowth in living cells.
I. Kaverina, O. Krylyshkina, K. Beningo, K. Anderson, Y.-L. Wang, and J. V. Small (2002)
J. Cell Sci. 115, 2283-2291
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882