Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

J. Neurosci. 20 (22): 8262-8268

Copyright © 2000 by the Society for Neuroscience.

The Journal of Neuroscience, November 15, 2000, 20(22):8262-8268

Regulation of Spine Calcium Dynamics by Rapid Spine Motility

Ania Majewska, Ayumu Tashiro, and Rafael Yuste

Department of Biological Sciences, Columbia University, New York, New York 10027

Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Spines also undergo rapid morphological changes, although the function of this motility is still unclear. We have investigated the effect of spine movement on spine calcium dynamics with two-photon photobleaching of enhanced green fluorescent protein and calcium imaging of action potential-elicited transients in spines from layer 2/3 pyramidal neurons in mouse visual cortex slices. The elongation or retraction of the spine neck during spine motility alters the diffusional coupling between spine and dendrite and significantly changes calcium decay kinetics in spines. Our results demonstrate that the spine's ability to compartmentalize calcium is constantly changing.

Key words: GFP; imaging; two photon; photobleaching; LTP; neocortex


Copyright © 2000 Society for Neuroscience  0270-6474/00/20228262-07$05.00/0

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions.
R. Benavides-Piccione, I. Fernaud-Espinosa, V. Robles, R. Yuste, and J. DeFelipe (2013)
Cereb Cortex 23, 1798-1810
   Abstract »    Full Text »    PDF »
The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease.
P. Merino-Serrais, R. Benavides-Piccione, L. Blazquez-Llorca, A. Kastanauskaite, A. Rabano, J. Avila, and J. DeFelipe (2013)
Brain 136, 1913-1928
   Abstract »    Full Text »    PDF »
Calcium Signaling in Dendritic Spines.
M. J. Higley and B. L. Sabatini (2012)
Cold Spring Harb Perspect Biol 4, a005686
   Abstract »    Full Text »    PDF »
Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo.
H. Yu, A. K. Majewska, and M. Sur (2011)
PNAS 108, 21235-21240
   Abstract »    Full Text »    PDF »
The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke.
K. Ruscher, M. Shamloo, M. Rickhag, I. Ladunga, L. Soriano, L. Gisselsson, H. Toresson, L. Ruslim-Litrus, D. Oksenberg, R. Urfer, et al. (2011)
Brain 134, 732-746
   Abstract »    Full Text »    PDF »
Quantifying Translational Mobility in Neurons: Comparison between Current Optical Techniques.
S. A. Kim, H. Sanabria, M. A. Digman, E. Gratton, P. Schwille, W. R. Zipfel, and M. N. Waxham (2010)
J. Neurosci. 30, 16409-16416
   Full Text »    PDF »
Anatomical and Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and Mouse.
B. N. Routh, D. Johnston, K. Harris, and R. A. Chitwood (2009)
J Neurophysiol 102, 2288-2302
   Abstract »    Full Text »    PDF »
Two-Photon Calcium Imaging of Spines and Dendrites.
J. H. Goldberg and R. Yuste (2009)
Cold Spring Harb Protoc 2009, pdb.prot5231
   Abstract »    Full Text »    PDF »
Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization.
A. Grunditz, N. Holbro, L. Tian, Y. Zuo, and T. G. Oertner (2008)
J. Neurosci. 28, 13457-13466
   Abstract »    Full Text »    PDF »
Dendritic Excitability and Synaptic Plasticity.
P. J. Sjostrom, E. A. Rancz, A. Roth, and M. Hausser (2008)
Physiol Rev 88, 769-840
   Abstract »    Full Text »    PDF »
Synaptic modifications at the CA3 CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices.
J. M. Mateos, A. Luthi, N. Savic, B. Stierli, P. Streit, B. H. Gahwiler, and R. A. McKinney (2007)
J. Physiol. 581, 129-138
   Abstract »    Full Text »    PDF »
Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells.
A. Lorincz, B. Rozsa, G. Katona, E. S. Vizi, and G. Tamas (2007)
PNAS 104, 1033-1038
   Abstract »    Full Text »    PDF »
Dendritic spines linearize the summation of excitatory potentials.
R. Araya, K. B. Eisenthal, and R. Yuste (2006)
PNAS 103, 18799-18804
   Abstract »    Full Text »    PDF »
The spine neck filters membrane potentials.
R. Araya, J. Jiang, K. B. Eisenthal, and R. Yuste (2006)
PNAS 103, 17961-17966
   Abstract »    Full Text »    PDF »
Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion.
V. Scheuss, R. Yasuda, A. Sobczyk, and K. Svoboda (2006)
J. Neurosci. 26, 8183-8194
   Abstract »    Full Text »    PDF »
Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms..
T. Kuriu, A. Inoue, H. Bito, K. Sobue, and S. Okabe (2006)
J. Neurosci. 26, 7693-7706
   Abstract »    Full Text »    PDF »
Effects of Synaptic Activity on Dendritic Spine Motility of Developing Cortical Layer V Pyramidal Neurons.
S. Oray, A. Majewska, and M. Sur (2006)
Cereb Cortex 16, 730-741
   Abstract »    Full Text »    PDF »
Remodeling of synaptic structure in sensory cortical areas in vivo..
A. K. Majewska, J. R. Newton, and M. Sur (2006)
J. Neurosci. 26, 3021-3029
   Abstract »    Full Text »    PDF »
Imaging membrane potential in dendritic spines.
M. Nuriya, J. Jiang, B. Nemet, K. B. Eisenthal, and R. Yuste (2006)
PNAS 103, 786-790
   Abstract »    Full Text »    PDF »
The p75 Neurotrophin Receptor Negatively Modulates Dendrite Complexity and Spine Density in Hippocampal Neurons.
M. Zagrebelsky, A. Holz, G. Dechant, Y.-A. Barde, T. Bonhoeffer, and M. Korte (2005)
J. Neurosci. 25, 9989-9999
   Abstract »    Full Text »    PDF »
NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines.
A. Sobczyk, V. Scheuss, and K. Svoboda (2005)
J. Neurosci. 25, 6037-6046
   Abstract »    Full Text »    PDF »
Activity-dependent Regulation of Synapse and Dendritic Spine Morphology in Developing Barrel Cortex Requires Phospholipase C-{beta}1 Signalling.
T. L. Spires, Z. Molnar, P. C. Kind, P. M. Cordery, A. L. Upton, C. Blakemore, and A. J. Hannan (2005)
Cereb Cortex 15, 385-393
   Abstract »    Full Text »    PDF »
Cadherin activity is required for activity-induced spine remodeling.
K. Okamura, H. Tanaka, Y. Yagita, Y. Saeki, A. Taguchi, Y. Hiraoka, L.-H. Zeng, D. R Colman, and N. Miki (2004)
J. Cell Biol. 167, 961-972
   Abstract »    Full Text »    PDF »
Hypothermia-Associated Loss of Dendritic Spines.
M. Roelandse and A. Matus (2004)
J. Neurosci. 24, 7843-7847
   Abstract »    Full Text »    PDF »
A Morphological Correlate of Synaptic Scaling in Visual Cortex.
W. Wallace and M. F. Bear (2004)
J. Neurosci. 24, 6928-6938
   Abstract »    Full Text »    PDF »
AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus.
D. A. Richards, V. de Paola, P. Caroni, B. H. Gahwiler, and R. A. McKinney (2004)
J. Physiol. 558, 503-512
   Abstract »    Full Text »    PDF »
Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation.
A. Majewska and M. Sur (2003)
PNAS 100, 16024-16029
   Abstract »    Full Text »    PDF »
Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.
H. Schmidt, K. M Stiefel, P. Racay, B. Schwaller, and J. Eilers (2003)
J. Physiol. 551, 13-32
   Abstract »    Full Text »    PDF »
Activity-Regulated Dynamic Behavior of Early Dendritic Protrusions: Evidence for Different Types of Dendritic Filopodia.
C. Portera-Cailliau, D. T. Pan, and R. Yuste (2003)
J. Neurosci. 23, 7129-7142
   Abstract »    Full Text »    PDF »
Role of Dendritic Spines in Action Potential Backpropagation: A Numerical Simulation Study.
D. Tsay and R. Yuste (2002)
J Neurophysiol 88, 2834-2845
   Abstract »    Full Text »    PDF »
The Cadherin Family of Cell Adhesion Molecules: Multiple Roles in Synaptic Plasticity.
G. W. Huntley, O. Gil, and O. Bozdagi (2002)
Neuroscientist 8, 221-233
   Abstract »    PDF »
Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons.
P. W. Vanderklish and G. M. Edelman (2002)
PNAS 99, 1639-1644
   Abstract »    Full Text »    PDF »
Coincident Spiking Activity Induces Long-Term Changes in Inhibition of Neocortical Pyramidal Cells.
C. D. Holmgren and Y. Zilberter (2001)
J. Neurosci. 21, 8270-8277
   Abstract »    Full Text »    PDF »
Book Review: On the Function of Dendritic Spines.
R. Yuste and A. Majewska (2001)
Neuroscientist 7, 387-395
   Abstract »    PDF »
Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons.
E. Korkotian and M. Segal (2001)
J. Neurosci. 21, 6115-6124
   Abstract »    Full Text »    PDF »
Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons.
P. W. Vanderklish and G. M. Edelman (2002)
PNAS 99, 1639-1644
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882