Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 20 (13): 4724-4735

Copyright © 2000 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, July 2000, p. 4724-4735, Vol. 20, No. 13
0270-7306/00/$04.00+0
Copyright © 2000, American Society for Microbiology. All rights reserved.

The Fanconi Anemia Protein FANCC Binds to and Facilitates the Activation of STAT1 by Gamma Interferon and Hematopoietic Growth Factors

Qishen Pang,1,2 Sara Fagerlie,1 Tracy A. Christianson,2 Winifred Keeble,2 Greg Faulkner,2 Jane Diaz,2 R. Keaney Rathbun,2 and Grover C. Bagby1,2,*

Oregon Cancer Center, Department of Medicine (Division of Hematology and Medical Oncology) and Department of Molecular and Medical Genetics, Oregon Health Sciences University,1 and Molecular Hematopoiesis Laboratory, VA Medical Center,2 Portland, Oregon 97201

Received 14 September 1999/Returned for modification 24 February 2000/Accepted 7 April 2000

Hematopoietic progenitor cells from Fanconi anemia (FA) group C (FA-C) patients display hypersensitivity to the apoptotic effects of gamma interferon (IFN-gamma ) and constitutively express a variety of IFN-dependent genes. Paradoxically, however, STAT1 activation is suppressed in IFN-stimulated FA cells, an abnormality corrected by transduction of normal FANCC cDNA. We therefore sought to define the specific role of FANCC protein in signal transduction through receptors that activate STAT1. Expression and phosphorylation of IFN-gamma receptor alpha  chain (IFN-gamma Ralpha ) and JAK1 and JAK2 tyrosine kinases were equivalent in both normal and FA-C cells. However, in coimmunoprecipitation experiments STAT1 did not dock at the IFN-gamma R of FA-C cells, an abnormality corrected by transduction of the FANCC gene. In addition, glutathione S-transferase fusion genes encoding normal FANCC but not a mutant FANCC bearing an inactivating point mutation (L554P) bound to STAT1 in lysates of IFN-gamma -stimulated B cells and IFN-, granulocyte-macrophage colony-stimulating factor- and stem cell factor-stimulated MO7e cells. Kinetic studies revealed that the initial binding of FANCC was to nonphosphorylated STAT1 but that subsequently the complex moved to the receptor docking site, at which point STAT1 became phosphorylated. The STAT1 phosphorylation defect in FA-C cells was functionally significant in that IFN induction of IFN response factor 1 was suppressed and STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells. We also determined that the IFN-gamma hypersensitivity of FA-C hematopoietic progenitor cells does not derive from STAT1 activation defects because granulocyte-macrophage CFU and erythroid burst-forming units from STAT1-/- mice were resistant to IFN-gamma . However, BFU-E responses to SCF and erythropoietin were suppressed in STAT-/- mice. Consequently, because the FANCC protein is involved in the activation of STAT1 through receptors for at least three hematopoietic growth and survival factor molecules, we reason that FA-C hematopoietic cells are excessively apoptotic because of an imbalance between survival cues (owing to a failure of STAT1 activation in FA-C cells) and apoptotic and mitogenic inhibitory cues (constitutively activated in FA-C cells in a STAT1-independent fashion).


* Corresponding author. Mailing address: Oregon Cancer Center, Oregon Health Sciences University, Portland, OR 97201. Phone: (503) 494-6343. Fax: (503) 494-7086. E-mail: grover{at}ohsu.edu.


Molecular and Cellular Biology, July 2000, p. 4724-4735, Vol. 20, No. 13
0270-7306/00/$04.00+0
Copyright © 2000, American Society for Microbiology. All rights reserved.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Why does the bone marrow fail in Fanconi anemia?.
J. I. Garaycoechea and K. J. Patel (2014)
Blood 123, 26-34
   Abstract »    Full Text »    PDF »
Modulation of Inflammasome-Mediated Pulmonary Immune Activation by Type I IFNs Protects Bone Marrow Homeostasis during Systemic Responses to Pneumocystis Lung Infection.
S. Searles, K. Gauss, M. Wilkison, T. R. Hoyt, E. Dobrinen, and N. Meissner (2013)
J. Immunol. 191, 3884-3895
   Abstract »    Full Text »    PDF »
Elevated levels of STAT1 in Fanconi anemia group A lymphoblasts correlate with the cells' sensitivity to DNA interstrand crosslinking drugs.
I. Prieto-Remon, D. Sanchez-Carrera, M. Lopez-Duarte, C. Richard, and C. Pipaon (2013)
Haematologica 98, 705-713
   Abstract »    Full Text »    PDF »
Fanconi anemia proteins interact with CtBP1 and modulate the expression of the Wnt antagonist Dickkopf-1.
C. C. Huard, C. S. Tremblay, K. Helsper, M.-C. Delisle, D. Schindler, G. Levesque, and M. Carreau (2013)
Blood 121, 1729-1739
   Abstract »    Full Text »    PDF »
Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage.
A. Tulpule, M. W. Lensch, J. D. Miller, K. Austin, A. D'Andrea, T. M. Schlaeger, A. Shimamura, and G. Q. Daley (2010)
Blood 115, 3453-3462
   Abstract »    Full Text »    PDF »
TLR8-dependent TNF-{alpha} overexpression in Fanconi anemia group C cells.
S. M. Vanderwerf, J. Svahn, S. Olson, R. K. Rathbun, C. Harrington, J. Yates, W. Keeble, D. C. Anderson, P. Anur, N. F. Pereira, et al. (2009)
Blood 114, 5290-5298
   Abstract »    Full Text »    PDF »
Gamma Interferon Suppresses Erythropoiesis via Interleukin-15.
I. K. Mullarky, F. M. Szaba, L. W. Kummer, L. B. Wilhelm, M. A. Parent, L. L. Johnson, and S. T. Smiley (2007)
Infect. Immun. 75, 2630-2633
   Abstract »    Full Text »    PDF »
Inflammatory Reactive Oxygen Species-Mediated Hemopoietic Suppression in Fancc-Deficient Mice.
D. P. Sejas, R. Rani, Y. Qiu, X. Zhang, S. R. Fagerlie, H. Nakano, D. A. Williams, and Q. Pang (2007)
J. Immunol. 178, 5277-5287
   Abstract »    Full Text »    PDF »
The less-traveled Fanconi road.
G. C. Bagby (2006)
Blood 107, 4196-4197
   Full Text »    PDF »
Molecular pathogenesis of Fanconi anemia: recent progress.
T. Taniguchi and A. D. D'Andrea (2006)
Blood 107, 4223-4233
   Abstract »    Full Text »    PDF »
Enhanced TNF-{alpha}-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1.
K. Bijangi-Vishehsaraei, M. R. Saadatzadeh, A. Werne, K. A. W. McKenzie, R. Kapur, H. Ichijo, and L. S. Haneline (2005)
Blood 106, 4124-4130
   Abstract »    Full Text »    PDF »
A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution.
A. Halupa, M. L. Bailey, K. Huang, N. N. Iscove, D. E. Levy, and D. L. Barber (2005)
Blood 105, 552-561
   Abstract »    Full Text »    PDF »
The Fanconi anemia core complex associates with chromatin during S phase.
J. Mi and G. M. Kupfer (2005)
Blood 105, 759-766
   Abstract »    Full Text »    PDF »
Phosphorylation of Fanconi Anemia (FA) Complementation Group G Protein, FANCG, at Serine 7 Is Important for Function of the FA Pathway.
F. Qiao, J. Mi, J. B. Wilson, G. Zhi, N. R. Bucheimer, N. J. Jones, and G. M. Kupfer (2004)
J. Biol. Chem. 279, 46035-46045
   Abstract »    Full Text »    PDF »
FANCG Is Phosphorylated at Serines 383 and 387 during Mitosis.
J. Mi, F. Qiao, J. B. Wilson, A. A. High, M. J. Schroeder, P. T. Stukenberg, A. Moss, J. Shabanowitz, D. F. Hunt, N. J. Jones, et al. (2004)
Mol. Cell. Biol. 24, 8576-8585
   Abstract »    Full Text »    PDF »
Impaired Type I IFN-Induced Jak/STAT Signaling in FA-C Cells and Abnormal CD4+ Th Cell Subsets in Fancc-/- Mice.
S. R. Fagerlie, T. Koretsky, B. Torok-Storb, and G. C. Bagby (2004)
J. Immunol. 173, 3863-3870
   Abstract »    Full Text »    PDF »
The Fanconi Anemia Core Complex Forms Four Complexes of Different Sizes in Different Subcellular Compartments.
A. Thomashevski, A. A. High, M. Drozd, J. Shabanowitz, D. F. Hunt, P. A. Grant, and G. M. Kupfer (2004)
J. Biol. Chem. 279, 26201-26209
   Abstract »    Full Text »    PDF »
Regulation of the Fanconi Anemia Group C Protein through Proteolytic Modification.
I. Brodeur, I. Goulet, C. S. Tremblay, C. Charbonneau, M.-C. Delisle, C. Godin, C. Huard, E. W. Khandjian, M. Buchwald, G. Levesque, et al. (2004)
J. Biol. Chem. 279, 4713-4720
   Abstract »    Full Text »    PDF »
Jun N-terminal kinase activity and early growth-response factor-1 gene expression are down-regulated in Fanconi anemia group A lymphoblasts.
C. Pipaon, J. A. Casado, J. A. Bueren, and J. L. Fernandez-Luna (2004)
Blood 103, 128-132
   Abstract »    Full Text »    PDF »
Nucleophosmin Interacts with and Inhibits the Catalytic Function of Eukaryotic Initiation Factor 2 Kinase PKR.
Q. Pang, T. A. Christianson, T. Koretsky, H. Carlson, L. David, W. Keeble, G. R. Faulkner, A. Speckhart, and G. C. Bagby (2003)
J. Biol. Chem. 278, 41709-41717
   Abstract »    Full Text »    PDF »
Acquired FANCA dysfunction and cytogenetic instability in adult acute myelogenous leukemia.
M. W. Lensch, M. Tischkowitz, T. A. Christianson, C. A. Reifsteck, S. A. Speckhart, P. M. Jakobs, M. E. O'Dwyer, S. B. Olson, M. M. Le Beau, S. V. Hodgson, et al. (2003)
Blood 102, 7-16
   Abstract »    Full Text »    PDF »
Increased sensitivity of Fancc-deficient hematopoietic cells to nitric oxide and evidence that this species mediates growth inhibition by cytokines.
S. Hadjur and F. R. Jirik (2003)
Blood 101, 3877-3884
   Abstract »    Full Text »    PDF »
Fanconi anaemia.
M D Tischkowitz and S V Hodgson (2003)
J. Med. Genet. 40, 1-10
   Abstract »    Full Text »
The Anti-apoptotic Function of Hsp70 in the Interferon-inducible Double-stranded RNA-dependent Protein Kinase-mediated Death Signaling Pathway Requires the Fanconi Anemia Protein, FANCC.
Q. Pang, T. A. Christianson, W. Keeble, T. Koretsky, and G. C. Bagby (2002)
J. Biol. Chem. 277, 49638-49643
   Abstract »    Full Text »    PDF »
The Fanconi anaemia genome stability and tumour suppressor network.
M. Bogliolo, O. Cabre, E. Callen, V. Castillo, A. Creus, R. Marcos, and J. Surralles (2002)
Mutagenesis 17, 529-538
   Abstract »    Full Text »    PDF »
In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice.
P. Rio, J. C. Segovia, H. Hanenberg, J. A. Casado, J. Martinez, K. Gottsche, N. C. Cheng, H. J. Van de Vrugt, F. Arwert, H. Joenje, et al. (2002)
Blood 100, 2032-2039
   Abstract »    Full Text »    PDF »
FANCE: the link between Fanconi anaemia complex assembly and activity.
P. Pace, M. Johnson, W. M. Tan, G. Mosedale, C. Sng, M. Hoatlin, J. de Winter, H. Joenje, F. Gergely, and K. J. Patel (2002)
EMBO J. 21, 3414-3423
   Abstract »    Full Text »    PDF »
Regulation of Erythropoietin-induced STAT Serine Phosphorylation by Distinct Mitogen-activated Protein Kinases.
R. Haq, A. Halupa, B. K. Beattie, J. M. Mason, B. W. Zanke, and D. L. Barber (2002)
J. Biol. Chem. 277, 17359-17366
   Abstract »    Full Text »    PDF »
The Fanconi anemia cell line HSC536N is not sensitive to interferon-gamma and does not cleave PARP in response to Fas-mediated cell killing.
T. R. Rutherford, N. E. Myatt, F. M. Gibson, A. A. Clarke ;, and G. C. Bagby Jr (2002)
Blood 99, 2627-2630
   Full Text »    PDF »
Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation.
K. Kirito, K. Nakajima, T. Watanabe, M. Uchida, M. Tanaka, K. Ozawa, and N. Komatsu (2002)
Blood 99, 102-110
   Abstract »    Full Text »    PDF »
A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA.
H. Yagasaki, D. Adachi, T. Oda, I. Garcia-Higuera, N. Tetteh, A. D. D'Andrea, M. Futaki, S. Asano, and T. Yamashita (2001)
Blood 98, 3650-3657
   Abstract »    Full Text »    PDF »
The Fanconi anemia complementation group C gene product: structural evidence of multifunctionality.
Q. Pang, T. A. Christianson, W. Keeble, J. Diaz, G. R. Faulkner, C. Reifsteck, S. Olson, and G. C. Bagby (2001)
Blood 98, 1392-1401
   Abstract »    Full Text »    PDF »
FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-{gamma}/TNF-{alpha}-mediated cytotoxicity.
Q. Pang, W. Keeble, T. A. Christianson, G. R. Faulkner, and G. C. Bagby (2001)
EMBO J. 20, 4478-4489
   Abstract »    Full Text »    PDF »
Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase.
S. Hadjur, K. Ung, L. Wadsworth, J. Dimmick, E. Rajcan-Separovic, R. W. Scott, M. Buchwald, and F. R. Jirik (2001)
Blood 98, 1003-1011
   Abstract »    Full Text »    PDF »
Functional correction of FA-C cells with FANCC suppresses the expression of interferon {gamma}-inducible genes.
S. R. Fagerlie, J. Diaz, T. A. Christianson, K. McCartan, W. Keeble, G. R. Faulkner, and G. C. Bagby (2001)
Blood 97, 3017-3024
   Abstract »    Full Text »    PDF »
Role of double-stranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon {gamma}, tumor necrosis factor-{alpha}, and double-stranded RNA.
Q. Pang, W. Keeble, J. Diaz, T. A. Christianson, S. Fagerlie, K. Rathbun, G. R. Faulkner, M. O'Dwyer, and G. C. Bagby Jr (2001)
Blood 97, 1644-1652
   Abstract »    Full Text »    PDF »
Interferon-gamma -induced apoptotic responses of Fanconi anemia group C hematopoietic progenitor cells involve caspase 8-dependent activation of caspase 3 family members.
R. K. Rathbun, T. A. Christianson, G. R. Faulkner, G. Jones, W. Keeble, M. O'Dwyer, and G. C. Bagby (2000)
Blood 96, 4204-4211
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882