Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 20 (18): 6826-6836

Copyright © 2000 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, September 2000, p. 6826-6836, Vol. 20, No. 18
Copyright © 2000, American Society for Microbiology. All rights reserved.

Hsp72-Mediated Suppression of c-Jun N-Terminal Kinase Is Implicated in Development of Tolerance to Caspase-Independent Cell Death

Vladimir L. Gabai,1,2 Julia A. Yaglom,1 Vladimir Volloch,3 Anatoli B. Meriin,1 Thomas Force,4 Maria Koutroumanis,5 Bernard Massie,5 Dick D. Mosser,5 and Michael Y. Sherman1,*

Boston Biomedical Research Institute, Watertown,1 Tufts University, Medford,3 and Massachusetts General Hospital, Charlestown,4 Massachusetts; Biotechnology Research Institute, Montreal, Quebec, Canada5; and Medical Radiology Research Center, Obninsk, Russia2

Received 28 December 1999/Returned for modification 22 February 2000/Accepted 26 June 2000

Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45°C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45°C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.

* Corresponding author. Mailing address: Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472. Phone: (617) 658-7776. Fax: (617) 972-1761. E-mail: sherman{at}

Molecular and Cellular Biology, September 2000, p. 6826-6836, Vol. 20, No. 18
Copyright © 2000, American Society for Microbiology. All rights reserved.

The role of 70-kDa heat shock protein in dDAVP-induced AQP2 trafficking in kidney collecting duct cells.
E.-J. Park, J.-S. Lim, H. J. Jung, E. Kim, K.-H. Han, and T.-H. Kwon (2013)
Am J Physiol Renal Physiol 304, F958-F971
   Abstract »    Full Text »    PDF »
Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis.
T. Kisseleva, M. Cong, Y. Paik, D. Scholten, C. Jiang, C. Benner, K. Iwaisako, T. Moore-Morris, B. Scott, H. Tsukamoto, et al. (2012)
PNAS 109, 9448-9453
   Abstract »    Full Text »    PDF »
Cryptotanshinone Activates p38/JNK and Inhibits Erk1/2 Leading to Caspase-Independent Cell Death in Tumor Cells.
W. Chen, L. Liu, Y. Luo, Y. Odaka, S. Awate, H. Zhou, T. Shen, S. Zheng, Y. Lu, and S. Huang (2012)
Cancer Prevention Research 5, 778-787
   Abstract »    Full Text »    PDF »
The role of heat shock proteins in gastrointestinal diseases.
V Dudeja, S M Vickers, and A K Saluja (2009)
Gut 58, 1000-1009
   Abstract »    Full Text »    PDF »
The Anti-inflammatory Effects of Heat Shock Protein 72 Involve Inhibition of High-Mobility-Group Box 1 Release and Proinflammatory Function in Macrophages.
D. Tang, R. Kang, W. Xiao, H. Wang, S. K. Calderwood, and X. Xiao (2007)
J. Immunol. 179, 1236-1244
   Abstract »    Full Text »    PDF »
Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy.
E. Schmitt, M. Gehrmann, M. Brunet, G. Multhoff, and C. Garrido (2007)
J. Leukoc. Biol. 81, 15-27
   Abstract »    Full Text »    PDF »
Invariant Leu Preceding Turn Motif Phosphorylation Site Controls the Interaction of Protein Kinase C with Hsp70.
T. Gao and A. C. Newton (2006)
J. Biol. Chem. 281, 32461-32468
   Abstract »    Full Text »    PDF »
Induction of Monocytic Tissue Factor Expression After Rewarming From Hypothermia In Vivo Is Counteracted by Heat Shock in c-Jun-Dependent Manner.
E. M. Egorina, M. A. Sovershaev, T. V. Kondratiev, J. O. Olsen, T. Tveita, and B. Osterud (2006)
Arterioscler Thromb Vasc Biol 26, 2401-2406
   Abstract »    Full Text »    PDF »
MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine.
Y.-J. Xu, H. K. Saini, M. Zhang, V. Elimban, and N. S. Dhalla (2006)
Cardiovasc Res 72, 163-174
   Abstract »    Full Text »    PDF »
Inhibition of the Mitotic Kinesin Eg5 Up-regulates Hsp70 through the Phosphatidylinositol 3-Kinase/Akt Pathway in Multiple Myeloma Cells.
M. Liu, R. Aneja, C. Liu, L. Sun, J. Gao, H. Wang, J.-T. Dong, V. Sarli, A. Giannis, H. C. Joshi, et al. (2006)
J. Biol. Chem. 281, 18090-18097
   Abstract »    Full Text »    PDF »
Deletion of the Inducible 70-kDa Heat Shock Protein Genes in Mice Impairs Cardiac Contractile Function and Calcium Handling Associated With Hypertrophy.
Y.-K. Kim, J. Suarez, Y. Hu, P. M. McDonough, C. Boer, D. J. Dix, and W. H. Dillmann (2006)
Circulation 113, 2589-2597
   Abstract »    Full Text »    PDF »
Multiple Thermometers in Mammalian Cells: Why Do Cells from Homeothermic Organisms Need to Measure Temperature?.
M. Y. Sherman and V. L. Gabai (2006)
Sci. STKE 2006, pe16
   Abstract »    Full Text »    PDF »
Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation.
K. Ruchalski, H. Mao, Z. Li, Z. Wang, S. Gillers, Y. Wang, D. D. Mosser, V. Gabai, J. H. Schwartz, and S. C. Borkan (2006)
J. Biol. Chem. 281, 7873-7880
   Abstract »    Full Text »    PDF »
Preheating Accelerates Mitogen-activated Protein (MAP) Kinase Inactivation Post-heat Shock via a Heat Shock Protein 70-mediated Increase in Phosphorylated MAP Kinase Phosphatase-1.
K.-H. Lee, C.-T. Lee, Y. W. Kim, S. K. Han, Y.-S. Shim, and C.-G. Yoo (2005)
J. Biol. Chem. 280, 13179-13186
   Abstract »    Full Text »    PDF »
Effects of Hsp70.1 Gene Knockout on the Mitochondrial Apoptotic Pathway After Focal Cerebral Ischemia.
S.-H. Lee, H.-M. Kwon, Y.-J. Kim, K.-M. Lee, M. Kim, and B.-W. Yoon (2004)
Stroke 35, 2195-2199
   Abstract »    Full Text »    PDF »
Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization.
J. Nylandsted, M. Gyrd-Hansen, A. Danielewicz, N. Fehrenbacher, U. Lademann, M. Hoyer-Hansen, E. Weber, G. Multhoff, M. Rohde, and M. Jaattela (2004)
J. Exp. Med. 200, 425-435
   Abstract »    Full Text »    PDF »
Forced Expression of the H11 Heat Shock Protein Can Be Regulated by DNA Methylation and Trigger Apoptosis in Human Cells.
M. D. Gober, C. C. Smith, K. Ueda, J. A. Toretsky, and L. Aurelian (2003)
J. Biol. Chem. 278, 37600-37609
   Abstract »    Full Text »    PDF »
Inactivation of Dual-Specificity Phosphatases Is Involved in the Regulation of Extracellular Signal-Regulated Kinases by Heat Shock and Hsp72.
J. Yaglom, C. O'Callaghan-Sunol, V. Gabai, and M. Y. Sherman (2003)
Mol. Cell. Biol. 23, 3813-3824
   Abstract »    Full Text »    PDF »
Heat Shock Protein Hsp72 Is a Negative Regulator of Apoptosis Signal-Regulating Kinase 1.
H.-S. Park, S.-G. Cho, C. K. Kim, H. S. Hwang, K. T. Noh, M.-S. Kim, S.-H. Huh, M. J. Kim, K. Ryoo, E. K. Kim, et al. (2002)
Mol. Cell. Biol. 22, 7721-7730
   Abstract »    Full Text »    PDF »
Heat Shock Protein 72 Enhances Manganese Superoxide Dismutase Activity During Myocardial Ischemia-Reperfusion Injury, Associated With Mitochondrial Protection and Apoptosis Reduction.
K. Suzuki, B. Murtuza, I. A. Sammut, N. Latif, J. Jayakumar, R. T. Smolenski, Y. Kaneda, Y. Sawa, H. Matsuda, and M. H. Yacoub (2002)
Circulation 106, I-270-I-276
   Abstract »    Full Text »    PDF »
Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells.
F. Li, H. P. Mao, K. L. Ruchalski, Y. H. Wang, W. Choy, J. H. Schwartz, and S. C. Borkan (2002)
Am J Physiol Cell Physiol 283, C917-C926
   Abstract »    Full Text »    PDF »
Differential Activation of the c-Jun N-Terminal Kinase Pathway in Arsenite-Induced Apoptosis and Sensitization of Chemically Resistant Compared to Susceptible B-Lymphoma Cell Lines.
D. E. Muscarella and S. E. Bloom (2002)
Toxicol. Sci. 68, 82-92
   Abstract »    Full Text »    PDF »
Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway.
T. Igaki, H. Kanda, Y. Yamamoto-Goto, H. Kanuka, E. Kuranaga, T. Aigaki, and M. Miura (2002)
EMBO J. 21, 3009-3018
   Abstract »    Full Text »    PDF »
Hsp72 and Stress Kinase c-jun N-Terminal Kinase Regulate the Bid-Dependent Pathway in Tumor Necrosis Factor-Induced Apoptosis.
V. L. Gabai, K. Mabuchi, D. D. Mosser, and M. Y. Sherman (2002)
Mol. Cell. Biol. 22, 3415-3424
   Abstract »    Full Text »    PDF »
Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin.
A. Wyttenbach, O. Sauvageot, J. Carmichael, C. Diaz-Latoud, A.-P. Arrigo, and D. C. Rubinsztein (2002)
Hum. Mol. Genet. 11, 1137-1151
   Abstract »    Full Text »    PDF »
Molecular Biology of Thermoregulation: Invited Review: Interplay between molecular chaperones and signaling pathways in survival of heat shock.
V. L. Gabai and M. Y. Sherman (2002)
J Appl Physiol 92, 1743-1748
   Abstract »    Full Text »    PDF »
Insights into Regulation and Function of the Major Stress-Induced hsp70 Molecular Chaperone In Vivo: Analysis of Mice with Targeted Gene Disruption of the hsp70.1 or hsp70.3 Gene.
L. Huang, N. F. Mivechi, and D. Moskophidis (2001)
Mol. Cell. Biol. 21, 8575-8591
   Abstract »    Full Text »    PDF »
Hsp70 interactions with the p53 tumour suppressor protein.
M. Zylicz, F. W. King, and A. Wawrzynow (2001)
EMBO J. 20, 4634-4638
   Full Text »    PDF »
Heat shock proteins and cardiac protection.
D. S Latchman (2001)
Cardiovasc Res 51, 637-646
   Abstract »    Full Text »    PDF »
Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase.
H.-S. Park, J.-S. Lee, S.-H. Huh, J.-S. Seo, and E.-J. Choi (2001)
EMBO J. 20, 446-456
   Abstract »    Full Text »    PDF »
Accelerated Metabolism and Exclusion of 4-Hydroxynonenal through Induction of RLIP76 and hGST5.8 Is an Early Adaptive Response of Cells to Heat and Oxidative Stress.
J.-Z. Cheng, R. Sharma, Y. Yang, S. S. Singhal, A. Sharma, M. K. Saini, S. V. Singh, P. Zimniak, S. Awasthi, and Y. C. Awasthi (2001)
J. Biol. Chem. 276, 41213-41223
   Abstract »    Full Text »    PDF »
Prevention of Kidney Ischemia/Reperfusion-induced Functional Injury, MAPK and MAPK Kinase Activation, and Inflammation by Remote Transient Ureteral Obstruction.
K. M. Park, C. Kramers, M. Vayssier-Taussat, A. Chen, and J. V. Bonventre (2002)
J. Biol. Chem. 277, 2040-2049
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882