Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 20 (22): 8382-8389

Copyright © 2000 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, November 2000, p. 8382-8389, Vol. 20, No. 22
0270-7306/00/$04.00+0
Copyright © 2000, American Society for Microbiology. All rights reserved.

ERK5 Is a Novel Type of Mitogen-Activated Protein Kinase Containing a Transcriptional Activation Domain

Herbert G. Kasler, Joseph Victoria, Omar Duramad, and Astar Winoto*

Cancer Research Lab and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200

Received 21 June 2000/Returned for modification 2 August 2000/Accepted 15 August 2000

Previous studies have shown that upregulation of the orphan steroid receptor Nur77 is required for the apoptosis of immature T cells in response to antigen receptor signals. Transcriptional upregulation of Nur77 in response to antigen receptor signaling involves two binding sites for the MEF2 family of transcription factors located in the Nur77 promoter. Calcium signals greatly increase the activity of MEF2D in T cells via a posttranslational mechanism. The mitogen-activated protein (MAP) kinase ERK5 was isolated in a yeast two-hybrid screen using the MADS-MEF2 domain of MEF2D as bait. ERK5 resembles the other MAP kinase family members in its N-terminal half, but it also contains a 400-amino-acid C-terminal domain of previously uncharacterized function. We report here that the C-terminal region of ERK5 contains a MEF2-interacting domain and, surprisingly, also a potent transcriptional activation domain. These domains are both required for coactivation of MEF2D by ERK5. The MEF2-ERK5 interaction was found to be activation dependent in vivo and inhibitable in vitro by the calcium-sensitive MEF2 repressor Cabin 1. The transcriptional activation domain of ERK5 is required for maximal MEF2 activity in response to calcium flux in T cells, and it can activate the endogenous Nur77 gene when constitutively recruited to the Nur77 promoter via MEF2 sites. These studies provide insights into a mechanism whereby MEF2 activity can respond to calcium signaling and suggest a novel, unexpected mechanism of MAP kinase function.


* Corresponding author. Mailing address: Department of Molecular and Cell Biology, Cancer Research Lab and Division of Immunology, 469 LSA, University of California, Berkeley, CA 94720-3200. Phone: (510) 642-0217. Fax: (510) 642-0468. E-mail: winoto{at}uclink4.berkeley.edu.


Molecular and Cellular Biology, November 2000, p. 8382-8389, Vol. 20, No. 22
0270-7306/00/$04.00+0
Copyright © 2000, American Society for Microbiology. All rights reserved.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Canonical and Kinase Activity-Independent Mechanisms for Extracellular Signal-Regulated Kinase 5 (ERK5) Nuclear Translocation Require Dissociation of Hsp90 from the ERK5-Cdc37 Complex.
T. Erazo, A. Moreno, G. Ruiz-Babot, A. Rodriguez-Asiain, N. A. Morrice, J. Espadamala, J. R. Bayascas, N. Gomez, and J. M. Lizcano (2013)
Mol. Cell. Biol. 33, 1671-1686
   Abstract »    Full Text »    PDF »
A Crucial Role for p90RSK-Mediated Reduction of ERK5 Transcriptional Activity in Endothelial Dysfunction and Atherosclerosis.
N.-T. Le, K.-S. Heo, Y. Takei, H. Lee, C.-H. Woo, E. Chang, C. McClain, C. Hurley, X. Wang, F. Li, et al. (2013)
Circulation 127, 486-499
   Abstract »    Full Text »    PDF »
Okadaic acid inhibits the trichostatin A-mediated increase of human CYP46A1 neuronal expression in a ERK1/2-Sp3-dependent pathway.
M. J. Nunes, M. Moutinho, I. Milagre, M. J. Gama, and E. Rodrigues (2012)
J. Lipid Res. 53, 1910-1919
   Abstract »    Full Text »    PDF »
p90RSK Targets the ERK5-CHIP Ubiquitin E3 Ligase Activity in Diabetic Hearts and Promotes Cardiac Apoptosis and Dysfunction.
N.-T. Le, Y. Takei, T. Shishido, C.-H. Woo, E. Chang, K.-S. Heo, H. Lee, Y. Lu, C. Morrell, M. Oikawa, et al. (2012)
Circ. Res. 110, 536-550
   Abstract »    Full Text »    PDF »
Targeting the BMK1 MAP Kinase Pathway in Cancer Therapy.
Q. Yang and J.-D. Lee (2011)
Clin. Cancer Res. 17, 3527-3532
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale.
B. A. Rose, T. Force, and Y. Wang (2010)
Physiol Rev 90, 1507-1546
   Abstract »    Full Text »    PDF »
Multisite phosphorylation of Erk5 in mitosis.
E. DIaz-RodrIguez and A. Pandiella (2010)
J. Cell Sci. 123, 3146-3156
   Abstract »    Full Text »    PDF »
Erk5 Activation Elicits a Vasoprotective Endothelial Phenotype via Induction of Kruppel-like Factor 4 (KLF4).
N. Ohnesorge, D. Viemann, N. Schmidt, T. Czymai, D. Spiering, M. Schmolke, S. Ludwig, J. Roth, M. Goebeler, and M. Schmidt (2010)
J. Biol. Chem. 285, 26199-26210
   Abstract »    Full Text »    PDF »
Natural Angiogenesis Inhibitor Signals through Erk5 Activation of Peroxisome Proliferator-activated Receptor {gamma} (PPAR{gamma}).
D. Biyashev, D. Veliceasa, A. Kwiatek, M. M. Sutanto, R. N. Cohen, and O. V. Volpert (2010)
J. Biol. Chem. 285, 13517-13524
   Abstract »    Full Text »    PDF »
Targeted Deletion of the Extracellular Signal-Regulated Protein Kinase 5 Attenuates Hypertrophic Response and Promotes Pressure Overload-Induced Apoptosis in the Heart.
T. E. Kimura, J. Jin, M. Zi, S. Prehar, W. Liu, D. Oceandy, J.-i. Abe, L. Neyses, A. H. Weston, E. J. Cartwright, et al. (2010)
Circ. Res. 106, 961-970
   Abstract »    Full Text »    PDF »
Coupling of the Cell Cycle and Apoptotic Machineries in Developing T Cells.
L. Xue, Y. Sun, L. Chiang, B. He, C. Kang, H. Nolla, and A. Winoto (2010)
J. Biol. Chem. 285, 7556-7565
   Abstract »    Full Text »    PDF »
MEK5/ERK5 Signaling Modulates Endothelial Cell Migration and Focal Contact Turnover.
D. Spiering, M. Schmolke, N. Ohnesorge, M. Schmidt, M. Goebeler, J. Wegener, V. Wixler, and S. Ludwig (2009)
J. Biol. Chem. 284, 24972-24980
   Abstract »    Full Text »    PDF »
MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2.
E. J. Carter, R. A. Cosgrove, I. Gonzalez, J. H. Eisemann, F. A. Lovett, L. J. Cobb, and J. M. Pell (2009)
J. Cell Sci. 122, 3104-3112
   Abstract »    Full Text »    PDF »
A Retrograde Neuronal Survival Response: Target-Derived Neurotrophins Regulate MEF2D and bcl-w.
M. F. Pazyra-Murphy, A. Hans, S. L. Courchesne, C. Karch, K. E. Cosker, H. M. Heerssen, F. L. Watson, T. Kim, M. E. Greenberg, and R. A. Segal (2009)
J. Neurosci. 29, 6700-6709
   Abstract »    Full Text »    PDF »
The mitogen-activated protein kinase Erk5 mediates human mesangial cell activation.
F. Dorado, S. Velasco, A. Esparis-Ogando, M. Pericacho, A. Pandiella, J. Silva, J. M. Lopez-Novoa, and A. Rodriguez-Barbero (2008)
Nephrol. Dial. Transplant. 23, 3403-3411
   Abstract »    Full Text »    PDF »
ERK5 promotes Src-induced podosome formation by limiting Rho activation.
M. Schramp, O. Ying, T. Y. Kim, and G. S. Martin (2008)
J. Cell Biol. 181, 1195-1210
   Abstract »    Full Text »    PDF »
Non-redundant function of the MEK5-ERK5 pathway in thymocyte apoptosis.
S. J. Sohn, G. M. Lewis, and A. Winoto (2008)
EMBO J. 27, 1896-1906
   Abstract »    Full Text »    PDF »
During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain.
J. Thompson and A. Winoto (2008)
J. Exp. Med. 205, 1029-1036
   Abstract »    Full Text »    PDF »
Extracellular Signal-Regulated Kinase 5 SUMOylation Antagonizes Shear Stress-Induced Antiinflammatory Response and Endothelial Nitric Oxide Synthase Expression in Endothelial Cells.
C.-H. Woo, T. Shishido, C. McClain, J. H. Lim, J.-D. Li, J. Yang, C. Yan, and J.-i. Abe (2008)
Circ. Res. 102, 538-545
   Abstract »    Full Text »    PDF »
Normal development is an integral part of tumorigenesis in T cell-specific PTEN-deficient mice.
L. Xue, H. Nolla, A. Suzuki, T. W. Mak, and A. Winoto (2008)
PNAS 105, 2022-2027
   Abstract »    Full Text »    PDF »
Activation of a C-terminal Transcriptional Activation Domain of ERK5 by Autophosphorylation.
H. Morimoto, K. Kondoh, S. Nishimoto, K. Terasawa, and E. Nishida (2007)
J. Biol. Chem. 282, 35449-35456
   Abstract »    Full Text »    PDF »
Histone Deacetylase 7 Functions as a Key Regulator of Genes Involved in both Positive and Negative Selection of Thymocytes.
H. G. Kasler and E. Verdin (2007)
Mol. Cell. Biol. 27, 5184-5200
   Abstract »    Full Text »    PDF »
Activation of Extracellular Signal-Regulated Kinase 5 Reduces Cardiac Apoptosis and Dysfunction via Inhibition of a Phosphodiesterase 3A/Inducible cAMP Early Repressor Feedback Loop.
C. Yan, B. Ding, T. Shishido, C.-H. Woo, S. Itoh, K.-I. Jeon, W. Liu, H. Xu, C. McClain, C. A. Molina, et al. (2007)
Circ. Res. 100, 510-519
   Abstract »    Full Text »    PDF »
Histone Deacetylase 3 Interacts with and Deacetylates Myocyte Enhancer Factor 2.
S. Gregoire, L. Xiao, J. Nie, X. Zhang, M. Xu, J. Li, J. Wong, E. Seto, and X.-J. Yang (2007)
Mol. Cell. Biol. 27, 1280-1295
   Abstract »    Full Text »    PDF »
ERK5 Activates NF-{kappa}B in Leukemic T Cells and Is Essential for Their Growth In Vivo.
J. Garaude, S. Cherni, S. Kaminski, E. Delepine, C. Chable-Bessia, M. Benkirane, J. Borges, A. Pandiella, M. A. Iniguez, M. Fresno, et al. (2006)
J. Immunol. 177, 7607-7617
   Abstract »    Full Text »    PDF »
Expressed in the Yeast Saccharomyces cerevisiae, Human ERK5 Is a Client of the Hsp90 Chaperone That Complements Loss of the Slt2p (Mpk1p) Cell Integrity Stress-Activated Protein Kinase.
A. W. Truman, S. H. Millson, J. M. Nuttall, V. King, M. Mollapour, C. Prodromou, L. H. Pearl, and P. W. Piper (2006)
Eukaryot. Cell 5, 1914-1924
   Abstract »    Full Text »    PDF »
ERK5 Activation Inhibits Inflammatory Responses via Peroxisome Proliferator-activated Receptor {delta} (PPAR{delta}) Stimulation.
C.-H. Woo, M. P. Massett, T. Shishido, S. Itoh, B. Ding, C. McClain, W. Che, S. R. Vulapalli, C. Yan, and J.-i. Abe (2006)
J. Biol. Chem. 281, 32164-32174
   Abstract »    Full Text »    PDF »
MAPK signalling: ERK5 versus ERK1/2.
S. Nishimoto and E. Nishida (2006)
EMBO Rep. 7, 782-786
   Abstract »    Full Text »    PDF »
Global Gene Expression Analysis of ERK5 and ERK1/2 Signaling Reveals a Role for HIF-1 in ERK5-mediated Responses.
R. E. Schweppe, T. H. Cheung, and N. G. Ahn (2006)
J. Biol. Chem. 281, 20993-21003
   Abstract »    Full Text »    PDF »
Regulation of Nuclear Translocation of Extracellular Signal-Regulated Kinase 5 by Active Nuclear Import and Export Mechanisms.
K. Kondoh, K. Terasawa, H. Morimoto, and E. Nishida (2006)
Mol. Cell. Biol. 26, 1679-1690
   Abstract »    Full Text »    PDF »
Control of MEF2 Transcriptional Activity by Coordinated Phosphorylation and Sumoylation.
S. Gregoire, A. M. Tremblay, L. Xiao, Q. Yang, K. Ma, J. Nie, Z. Mao, Z. Wu, V. Giguere, and X.-J. Yang (2006)
J. Biol. Chem. 281, 4423-4433
   Abstract »    Full Text »    PDF »
A Novel Mitogen-Activated Protein Kinase Docking Site in the N Terminus of MEK5{alpha} Organizes the Components of the Extracellular Signal-Regulated Kinase 5 Signaling Pathway.
J. Seyfried, X. Wang, G. Kharebava, and C. Tournier (2005)
Mol. Cell. Biol. 25, 9820-9828
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of Tissue-Specific Genes by the ERK5 Mitogen-Activated Protein Kinase.
S. J. Sohn, D. Li, L. K. Lee, and A. Winoto (2005)
Mol. Cell. Biol. 25, 8553-8566
   Abstract »    Full Text »    PDF »
Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2.
O. Nakagawa, M. Arnold, M. Nakagawa, H. Hamada, J. M. Shelton, H. Kusano, T. M. Harris, G. Childs, K. P. Campbell, J. A. Richardson, et al. (2005)
Genes & Dev. 19, 2066-2077
   Abstract »    Full Text »    PDF »
Activation of a Nuclear Cdc2-Related Kinase within a Mitogen-Activated Protein Kinase-Like TDY Motif by Autophosphorylation and Cyclin-Dependent Protein Kinase-Activating Kinase.
Z. Fu, M. J. Schroeder, J. Shabanowitz, P. Kaldis, K. Togawa, A. K. Rustgi, D. F. Hunt, and T. W. Sturgill (2005)
Mol. Cell. Biol. 25, 6047-6064
   Abstract »    Full Text »    PDF »
A Novel Role for Extracellular Signal-Regulated Kinase 5 and Myocyte Enhancer Factor 2 in Medulloblastoma Cell Death.
L.-M. Sturla, C. W. Cowan, L. Guenther, R. C. Castellino, J. Y.H. Kim, and S. L. Pomeroy (2005)
Cancer Res. 65, 5683-5689
   Abstract »    Full Text »    PDF »
Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation.
F. Pan, A. R. Means, and J. O. Liu (2005)
EMBO J. 24, 2104-2113
   Abstract »    Full Text »    PDF »
Multifunctional role of Erk5 in multiple myeloma.
X. Carvajal-Vergara, S. Tabera, J. C. Montero, A. Esparis-Ogando, R. Lopez-Perez, G. Mateo, N. Gutierrez, M. Parmo-Cabanas, J. Teixido, J. F. San Miguel, et al. (2005)
Blood 105, 4492-4499
   Abstract »    Full Text »    PDF »
A Two-Hybrid Screen of the Yeast Proteome for Hsp90 Interactors Uncovers a Novel Hsp90 Chaperone Requirement in the Activity of a Stress-Activated Mitogen-Activated Protein Kinase, Slt2p (Mpk1p).
S. H. Millson, A. W. Truman, V. King, C. Prodromou, L. H. Pearl, and P. W. Piper (2005)
Eukaryot. Cell 4, 849-860
   Abstract »    Full Text »    PDF »
Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton.
J. C. Barros and C. J. Marshall (2005)
J. Cell Sci. 118, 1663-1671
   Abstract »    Full Text »    PDF »
Protein Kinase D1 Phosphorylates HDAC7 and Induces Its Nuclear Export after T-cell Receptor Activation.
M. Parra, H. Kasler, T. A. McKinsey, E. N. Olson, and E. Verdin (2005)
J. Biol. Chem. 280, 13762-13770
   Abstract »    Full Text »    PDF »
Association with Class IIa Histone Deacetylases Upregulates the Sumoylation of MEF2 Transcription Factors.
S. Gregoire and X.-J. Yang (2005)
Mol. Cell. Biol. 25, 2273-2287
   Abstract »    Full Text »    PDF »
Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis.
F. Dequiedt, J. Van Lint, E. Lecomte, V. Van Duppen, T. Seufferlein, J. R. Vandenheede, R. Wattiez, and R. Kettmann (2005)
J. Exp. Med. 201, 793-804
   Abstract »    Full Text »    PDF »
A Novel DNA-Binding Motif, Hallmark of a New Family of Plant Transcription Factors.
J. L. Carrasco, G. Ancillo, M. J. Castello, and P. Vera (2005)
Plant Physiology 137, 602-606
   Full Text »    PDF »
The Unique C-terminal Tail of the Mitogen-activated Protein Kinase ERK5 Regulates Its Activation and Nuclear Shuttling.
M. Buschbeck and A. Ullrich (2005)
J. Biol. Chem. 280, 2659-2667
   Abstract »    Full Text »    PDF »
Targeted Deletion of mek5 Causes Early Embryonic Death and Defects in the Extracellular Signal-Regulated Kinase 5/Myocyte Enhancer Factor 2 Cell Survival Pathway.
X. Wang, A. J. Merritt, J. Seyfried, C. Guo, E. S. Papadakis, K. G. Finegan, M. Kayahara, J. Dixon, R. P. Boot-Handford, E. J. Cartwright, et al. (2005)
Mol. Cell. Biol. 25, 336-345
   Abstract »    Full Text »    PDF »
The Hinge-Helix 1 Region of Peroxisome Proliferator-Activated Receptor {gamma}1 (PPAR{gamma}1) Mediates Interaction with Extracellular Signal-Regulated Kinase 5 and PPAR{gamma}1 Transcriptional Activation: Involvement in Flow-Induced PPAR{gamma} Activation in Endothelial Cells.
M. Akaike, W. Che, N.-L. Marmarosh, S. Ohta, M. Osawa, B. Ding, B. C. Berk, C. Yan, and J.-i. Abe (2004)
Mol. Cell. Biol. 24, 8691-8704
   Abstract »    Full Text »    PDF »
MAP kinases as structural adaptors and enzymatic activators in transcription complexes.
J. W. Edmunds and L. C. Mahadevan (2004)
J. Cell Sci. 117, 3715-3723
   Abstract »    Full Text »    PDF »
Functions of MAP Kinases: Insights from Gene-Targeting Studies.
K. Kuida and D. M. Boucher (2004)
J. Biochem. 135, 653-656
   Abstract »    Full Text »    PDF »
ERK7 Expression and Kinase Activity Is Regulated by the Ubiquitin-Proteosome Pathway.
W.-L. Kuo, C. J. Duke, M. K. Abe, E. L. Kaplan, S. Gomes, and M. R. Rosner (2004)
J. Biol. Chem. 279, 23073-23081
   Abstract »    Full Text »    PDF »
MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation.
Z. Raviv, E. Kalie, and R. Seger (2004)
J. Cell Sci. 117, 1773-1784
   Abstract »    Full Text »    PDF »
14-3-3{beta} Binds to Big Mitogen-activated Protein Kinase 1 (BMK1/ERK5) and Regulates BMK1 Function.
Q. Zheng, G. Yin, C. Yan, M. Cavet, and B. C. Berk (2004)
J. Biol. Chem. 279, 8787-8791
   Abstract »    Full Text »    PDF »
Differential Role of MEK5{alpha} and MEK5{beta} in BMK1/ERK5 Activation.
S. J. Cameron, J.-i. Abe, S. Malik, W. Che, and J. Yang (2004)
J. Biol. Chem. 279, 1506-1512
   Abstract »    Full Text »    PDF »
A novel transcription factor involved in plant defense endowed with protein phosphatase activity.
J. L. Carrasco, G. Ancillo, E. Mayda, and P. Vera (2003)
EMBO J. 22, 3376-3384
   Abstract »    Full Text »    PDF »
Regulation of Epidermal Growth Factor-induced Connexin 43 Gap Junction Communication by Big Mitogen-activated Protein Kinase 1/ERK5 but Not ERK1/2 Kinase Activation.
S. J. Cameron, S. Malik, M. Akaike, N. Lerner-Marmarosh, C. Yan, J.-D. Lee, J.-i. Abe, and J. Yang (2003)
J. Biol. Chem. 278, 18682-18688
   Abstract »    Full Text »    PDF »
ATF1 Phosphorylation by the ERK MAPK Pathway Is Required for Epidermal Growth Factor-induced c-jun Expression.
P. Gupta and R. Prywes (2002)
J. Biol. Chem. 277, 50550-50556
   Abstract »    Full Text »    PDF »
ERK5 MAPK Regulates Embryonic Angiogenesis and Acts as a Hypoxia-sensitive Repressor of Vascular Endothelial Growth Factor Expression.
S. J. Sohn, B. K. Sarvis, D. Cado, and A. Winoto (2002)
J. Biol. Chem. 277, 43344-43351
   Abstract »    Full Text »    PDF »
Role of MAP Kinases in the 1,25-Dihydroxyvitamin D3-induced Transactivation of the Rat Cytochrome P450C24 (CYP24) Promoter. SPECIFIC FUNCTIONS FOR ERK1/ERK2 AND ERK5.
P. P. Dwivedi, C. S. T. Hii, A. Ferrante, J. Tan, C. J. Der, J. L. Omdahl, H. A. Morris, and B. K. May (2002)
J. Biol. Chem. 277, 29643-29653
   Abstract »    Full Text »    PDF »
Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects.
C. P. Regan, W. Li, D. M. Boucher, S. Spatz, M. S. Su, and K. Kuida (2002)
PNAS 99, 9248-9253
   Abstract »    Full Text »    PDF »
ERK8, a New Member of the Mitogen-activated Protein Kinase Family.
M. K. Abe, M. P. Saelzler, R. Espinosa III, K. T. Kahle, M. B. Hershenson, M. M. Le Beau, and M. R. Rosner (2002)
J. Biol. Chem. 277, 16733-16743
   Abstract »    Full Text »    PDF »
Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy.
R. L. Nicol, N. Frey, G. Pearson, M. Cobb, J. Richardson, and E. N. Olson (2001)
EMBO J. 20, 2757-2767
   Abstract »    Full Text »    PDF »
A Novel Mitogen-Activated Protein Kinase Is Responsive to Raf and Mediates Growth Factor Specificity.
M. Janulis, N. Trakul, G. Greene, E. M. Schaefer, J. D. Lee, and M. R. Rosner (2001)
Mol. Cell. Biol. 21, 2235-2247
   Abstract »    Full Text »    PDF »
Granulocyte Colony-stimulating Factor Induces Erk5 Activation, Which Is Differentially Regulated by Protein-tyrosine Kinases and Protein Kinase C. REGULATION OF CELL PROLIFERATION AND SURVIVAL.
F. Dong, J. S. Gutkind, and A. C. Larner (2001)
J. Biol. Chem. 276, 10811-10816
   Abstract »    Full Text »    PDF »
Ten ERK-related Proteins in Three Distinct Classes Associate with AP-1 Proteins and/or AP-1 DNA.
N. V. Kumar and L. R. Bernstein (2001)
J. Biol. Chem. 276, 32362-32372
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882