Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 21 (1): 271-280

Copyright © 2001 by the American Society for Microbiology. All rights reserved.

Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1

Bevin Philip, and David E. Levin*

Department of Biochemistry & Molecular Biology, School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205

Received for publication 10 July 2000. Revision received 16 August 2000. Accepted for publication 12 October 2000.

Abstract: Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in apmt2 mutant and that this modification is important for signaling by Mid2.

* Corresponding author. Mailing address: Department of Biochemistry & Molecular Biology, The Johns Hopkins University, School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205. Phone: (410) 955-9825. Fax: (410) 955-2926. E-mail:levin{at}

A framework for mapping, visualisation and automatic model creation of signal-transduction networks.
C.-F. Tiger, F. Krause, G. Cedersund, R. Palmer, E. Klipp, S. Hohmann, H. Kitano, and M. Krantz (2014)
Mol Syst Biol 8, 578
   Abstract »    Full Text »    PDF »
The Wsc1p Cell Wall Signaling Protein Controls Biofilm (Mat) Formation Independently of Flo11p in Saccharomyces cerevisiae.
N. Sarode, S. E. Davis, R. N. Tams, and T. B. Reynolds (2014)
g3 4, 199-207
   Abstract »    Full Text »    PDF »
Role of the Guanine Nucleotide Exchange Factor Rom2 in Cell Wall Integrity Maintenance of Aspergillus fumigatus.
S. Samantaray, M. Neubauer, C. Helmschrott, and J. Wagener (2013)
Eukaryot. Cell 12, 288-298
   Abstract »    Full Text »    PDF »
Cell Polarization and Cytokinesis in Budding Yeast.
E. Bi and H.-O. Park (2012)
Genetics 191, 347-387
   Abstract »    Full Text »    PDF »
Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast.
M. Liu, C. Huang, S. R. Polu, R. Schneiter, and A. Chang (2012)
J. Cell Sci. 125, 2428-2435
   Abstract »    Full Text »    PDF »
Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi.
M. Delgado-Cerezo, C. Sanchez-Rodriguez, V. Escudero, E. Miedes, P. V. Fernandez, L. Jorda, C. Hernandez-Blanco, A. Sanchez-Vallet, P. Bednarek, P. Schulze-Lefert, et al. (2012)
Mol Plant 5, 98-114
   Abstract »    Full Text »    PDF »
Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway.
D. E. Levin (2011)
Genetics 189, 1145-1175
   Abstract »    Full Text »    PDF »
Axl2 Integrates Polarity Establishment, Maintenance, and Environmental Stress Response in the Filamentous Fungus Ashbya gossypii.
J. F. Anker and A. S. Gladfelter (2011)
Eukaryot. Cell 10, 1679-1693
   Abstract »    Full Text »    PDF »
Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin.
D. C. Prosser, T. G. Drivas, L. Maldonado-Baez, and B. Wendland (2011)
J. Cell Biol. 195, 657-671
   Abstract »    Full Text »    PDF »
Interruption of Inositol Sphingolipid Synthesis Triggers Stt4p-dependent Protein Kinase C Signaling.
S. A. Jesch, M. L. Gaspar, C. J. Stefan, M. A. Aregullin, and S. A. Henry (2010)
J. Biol. Chem. 285, 41947-41960
   Abstract »    Full Text »    PDF »
The Role of Receptor-Like Kinases in Regulating Cell Wall Function.
B. J. Steinwand and J. J. Kieber (2010)
Plant Physiology 153, 479-484
   Full Text »    PDF »
Reduced expression of the O-mannosyltransferase 2 (AfPmt2) leads to deficient cell wall and abnormal polarity in Aspergillus fumigatus.
W. Fang, W. Ding, B. Wang, H. Zhou, H. Ouyang, J. Ming, and C. Jin (2010)
Glycobiology 20, 542-552
   Abstract »    Full Text »    PDF »
A yeast MAPK cascade regulates pexophagy but not other autophagy pathways.
R. Manjithaya, S. Jain, J.-C. Farre, and S. Subramani (2010)
J. Cell Biol. 189, 303-310
   Abstract »    Full Text »    PDF »
Evasion of Endoplasmic Reticulum Surveillance Makes Wsc1p an Obligate Substrate of Golgi Quality Control.
S. Wang and D. T. W. Ng (2010)
Mol. Biol. Cell 21, 1153-1165
   Abstract »    Full Text »    PDF »
The Cell Surface Protein Gene ecm33+ Is a Target of the Two Transcription Factors Atf1 and Mbx1 and Negatively Regulates Pmk1 MAPK Cell Integrity Signaling in Fission Yeast.
H. Takada, A. Nishida, M. Domae, A. Kita, Y. Yamano, A. Uchida, S. Ishiwata, Y. Fang, X. Zhou, T. Masuko, et al. (2010)
Mol. Biol. Cell 21, 674-685
   Abstract »    Full Text »    PDF »
Our Paths Might Cross: the Role of the Fungal Cell Wall Integrity Pathway in Stress Response and Cross Talk with Other Stress Response Pathways.
B. B. Fuchs and E. Mylonakis (2009)
Eukaryot. Cell 8, 1616-1625
   Abstract »    Full Text »    PDF »
Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation.
A. Reider, S. L. Barker, S. K. Mishra, Y. J. Im, L. Maldonado-Baez, J. H. Hurley, L. M. Traub, and B. Wendland (2009)
EMBO J. 28, 3103-3116
   Abstract »    Full Text »    PDF »
Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast.
M. Mollapour, A. Shepherd, and P. W. Piper (2009)
Microbiology 155, 3304-3311
   Abstract »    Full Text »    PDF »
Comparative proteomic analysis of an Aspergillus fumigatus mutant deficient in glucosidase I (AfCwh41).
L. Zhang, D. Feng, W. Fang, H. Ouyang, Y. Luo, T. Du, and C. Jin (2009)
Microbiology 155, 2157-2167
   Abstract »    Full Text »    PDF »
The Synthetic Genetic Network around PKC1 Identifies Novel Modulators and Components of Protein Kinase C Signaling in Saccharomyces cerevisiae.
S. A. Krause, H. Xu, and J. V. Gray (2008)
Eukaryot. Cell 7, 1880-1887
   Abstract »    Full Text »    PDF »
Unconventional Genomic Architecture in the Budding Yeast Saccharomyces cerevisiae Masks the Nested Antisense Gene NAG1.
J. Ma, C. J. Dobry, D. J. Krysan, and A. Kumar (2008)
Eukaryot. Cell 7, 1289-1298
   Abstract »    Full Text »    PDF »
Two GDP-mannose transporters contribute to hyphal form and cell wall integrity in Aspergillus nidulans.
L. Jackson-Hayes, T. W. Hill, D. M. Loprete, L. M. Fay, B. S. Gordon, S. A. Nkashama, R. K. Patel, and C. V. Sartain (2008)
Microbiology 154, 2037-2047
   Abstract »    Full Text »    PDF »
The Saccharomyces cerevisiae Actin Cytoskeletal Component Bsp1p Has an Auxiliary Role in Actomyosin Ring Function and in the Maintenance of Bud-Neck Structure.
D. J. Wright, E. Munro, M. Corbett, A. J. Bentley, N. J. Fullwood, S. Murray, and C. Price (2008)
Genetics 178, 1903-1914
   Abstract »    Full Text »    PDF »
Susceptibility of Cryptococcus neoformans to Photodynamic Inactivation Is Associated with Cell Wall Integrity.
B. B. Fuchs, G. P. Tegos, M. R. Hamblin, and E. Mylonakis (2007)
Antimicrob. Agents Chemother. 51, 2929-2936
   Abstract »    Full Text »    PDF »
MpkA-Dependent and -Independent Cell Wall Integrity Signaling in Aspergillus nidulans.
T. Fujioka, O. Mizutani, K. Furukawa, N. Sato, A. Yoshimi, Y. Yamagata, T. Nakajima, and K. Abe (2007)
Eukaryot. Cell 6, 1497-1510
   Abstract »    Full Text »    PDF »
Up-regulation of the Cell Integrity Pathway in Saccharomyces cerevisiae Suppresses Temperature Sensitivity of the pgs1{Delta} Mutant.
Q. Zhong, G. Li, J. Gvozdenovic-Jeremic, and M. L. Greenberg (2007)
J. Biol. Chem. 282, 15946-15953
   Abstract »    Full Text »    PDF »
The Hsp40 Molecular Chaperone Ydj1p, Along With the Protein Kinase C Pathway, Affects Cell-Wall Integrity in the Yeast Saccharomyces cerevisiae.
C. M. Wright, S. W. Fewell, M. L. Sullivan, J. M. Pipas, S. C. Watkins, and J. L. Brodsky (2007)
Genetics 175, 1649-1664
   Abstract »    Full Text »    PDF »
Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond.
H.-O. Park and E. Bi (2007)
Microbiol. Mol. Biol. Rev. 71, 48-96
   Abstract »    Full Text »    PDF »
Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance.
C. Hernandez-Blanco, D. X. Feng, J. Hu, A. Sanchez-Vallet, L. Deslandes, F. Llorente, M. Berrocal-Lobo, H. Keller, X. Barlet, C. Sanchez-Rodriguez, et al. (2007)
PLANT CELL 19, 890-903
   Abstract »    Full Text »    PDF »
Signaling Alkaline pH Stress in the Yeast Saccharomyces cerevisiae through the Wsc1 Cell Surface Sensor and the Slt2 MAPK Pathway.
R. Serrano, H. Martin, A. Casamayor, and J. Arino (2006)
J. Biol. Chem. 281, 39785-39795
   Abstract »    Full Text »    PDF »
Plasma membrane polarization during mating in yeast cells.
T. J. Proszynski, R. Klemm, M. Bagnat, K. Gaus, and K. Simons (2006)
J. Cell Biol. 173, 861-866
   Abstract »    Full Text »    PDF »
Cell Wall Assembly in Saccharomyces cerevisiae.
G. Lesage and H. Bussey (2006)
Microbiol. Mol. Biol. Rev. 70, 317-343
   Abstract »    Full Text »    PDF »
The Saccharomyces cerevisiae 14-3-3 Proteins Are Required for the G1/S Transition, Actin Cytoskeleton Organization and Cell Wall Integrity.
F. Lottersberger, A. Panza, G. Lucchini, S. Piatti, and M. P. Longhese (2006)
Genetics 173, 661-675
   Abstract »    Full Text »    PDF »
The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy.
G. Ren, P. Vajjhala, J. S. Lee, B. Winsor, and A. L. Munn (2006)
Microbiol. Mol. Biol. Rev. 70, 37-120
   Abstract »    Full Text »    PDF »
The Rho3 and Rho4 small GTPases interact functionally with Wsc1p, a cell surface sensor of the protein kinase C cell-integrity pathway in Saccharomyces cerevisiae..
H. Fernandes, O. Roumanie, S. Claret, X. Gatti, D. Thoraval, F. Doignon, and M. Crouzet (2006)
Microbiology 152, 695-708
   Abstract »    Full Text »    PDF »
The RIM101 Pathway Contributes to Yeast Cell Wall Assembly and Its Function Becomes Essential in the Absence of Mitogen-Activated Protein Kinase Slt2p.
F. Castrejon, A. Gomez, M. Sanz, A. Duran, and C. Roncero (2006)
Eukaryot. Cell 5, 507-517
   Abstract »    Full Text »    PDF »
PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway.
W. R. Parrish, C. J. Stefan, and S. D. Emr (2005)
J. Cell Sci. 118, 5589-5601
   Abstract »    Full Text »    PDF »
Pkc1 Acts Through Zds1 and Gic1 to Suppress Growth and Cell Polarity Defects of a Yeast eIF5A Mutant.
C. F. Zanelli and S. R. Valentini (2005)
Genetics 171, 1571-1581
   Abstract »    Full Text »    PDF »
The Rgd1p Rho GTPase-Activating Protein and the Mid2p Cell Wall Sensor Are Required at Low pH for Protein Kinase C Pathway Activation and Cell Survival in Saccharomyces cerevisiae.
S. Claret, X. Gatti, F. Doignon, D. Thoraval, and M. Crouzet (2005)
Eukaryot. Cell 4, 1375-1386
   Abstract »    Full Text »    PDF »
Cell Wall Integrity Signaling in Saccharomyces cerevisiae.
D. E. Levin (2005)
Microbiol. Mol. Biol. Rev. 69, 262-291
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Heat Shock Transcription Factor Regulates Cell Wall Remodeling in Response to Heat Shock.
H. Imazu and H. Sakurai (2005)
Eukaryot. Cell 4, 1050-1056
   Abstract »    Full Text »    PDF »
Molecular Analysis Reveals Localization of Saccharomyces cerevisiae Protein Kinase C to Sites of Polarized Growth and Pkc1p Targeting to the Nucleus and Mitotic Spindle.
V. Denis and M. S. Cyert (2005)
Eukaryot. Cell 4, 36-45
   Abstract »    Full Text »    PDF »
Toward a Systems Approach to Understanding Plant Cell Walls.
C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, et al. (2004)
Science 306, 2206-2211
   Abstract »    Full Text »    PDF »
Oxidative Stress Activates FUS1 and RLM1 Transcription in the Yeast Saccharomyces cerevisiae in an Oxidant-dependent Manner.
L. Staleva, A. Hall, and S. J. Orlow (2004)
Mol. Biol. Cell 15, 5574-5582
   Abstract »    Full Text »    PDF »
Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae.
M. B. Frieman and B. P. Cormack (2004)
Microbiology 150, 3105-3114
   Abstract »    Full Text »    PDF »
Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor.
H. A. Vay, B. Philip, and D. E. Levin (2004)
Microbiology 150, 3281-3288
   Abstract »    Full Text »    PDF »
Impaired PRPP-synthesizing capacity compromises cell integrity signalling in Saccharomyces cerevisiae.
K. Wang, S. Vavassori, L. M. Schweizer, and M. Schweizer (2004)
Microbiology 150, 3327-3339
   Abstract »    Full Text »    PDF »
Pmt-Mediated O Mannosylation Stabilizes an Essential Component of the Secretory Apparatus, Sec20p, in Candida albicans.
Y. Weber, S. K.-H. Prill, and J. F. Ernst (2004)
Eukaryot. Cell 3, 1164-1168
   Abstract »    Full Text »    PDF »
Negative Regulation of Phosphatidylinositol 4,5-Bisphosphate Levels by the INP51-associated Proteins TAX4 and IRS4.
H. Morales-Johansson, P. Jenoe, F. T. Cooke, and M. N. Hall (2004)
J. Biol. Chem. 279, 39604-39610
   Abstract »    Full Text »    PDF »
Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans.
T. Oka, T. Hamaguchi, Y. Sameshima, M. Goto, and K. Furukawa (2004)
Microbiology 150, 1973-1982
   Abstract »    Full Text »    PDF »
O-Glycosylation as a Sorting Determinant for Cell Surface Delivery in Yeast.
T. J. Proszynski, K. Simons, and M. Bagnat (2004)
Mol. Biol. Cell 15, 1533-1543
   Abstract »    Full Text »    PDF »
Response of the Saccharomyces cerevisiae Mpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz Protein Phosphatases.
S. Merchan, D. Bernal, R. Serrano, and L. Yenush (2004)
Eukaryot. Cell 3, 100-107
   Abstract »    Full Text »    PDF »
Stress-specific Activation Mechanisms for the "Cell Integrity" MAPK Pathway.
J. C. Harrison, T. R. Zyla, E. S. G. Bardes, and D. J. Lew (2004)
J. Biol. Chem. 279, 2616-2622
   Abstract »    Full Text »    PDF »
Aberrant Processing of the WSC Family and Mid2p Cell Surface Sensors Results in Cell Death of Saccharomyces cerevisiae O-Mannosylation Mutants.
M. Lommel, M. Bagnat, and S. Strahl (2004)
Mol. Cell. Biol. 24, 46-57
   Abstract »    Full Text »    PDF »
The Yeast Protein Kinase C Cell Integrity Pathway Mediates Tolerance to the Antifungal Drug Caspofungin through Activation of Slt2p Mitogen-Activated Protein Kinase Signaling.
C. Reinoso-Martin, C. Schuller, M. Schuetzer-Muehlbauer, and K. Kuchler (2003)
Eukaryot. Cell 2, 1200-1210
   Abstract »    Full Text »    PDF »
Receptor Internalization in Yeast Requires the Tor2-Rho1 Signaling Pathway.
A. K.A. deHart, J. D. Schnell, D. A. Allen, J.-Y. Tsai, and L. Hicke (2003)
Mol. Biol. Cell 14, 4676-4684
   Abstract »    Full Text »    PDF »
Posttranslational Modifications Required for Cell Surface Localization and Function of the Fungal Adhesin Aga1p.
G. Huang, M. Zhang, and S. E. Erdman (2003)
Eukaryot. Cell 2, 1099-1114
   Abstract »    Full Text »    PDF »
Mitogen-activated Protein Kinase Stimulation of Ca2+ Signaling Is Required for Survival of Endoplasmic Reticulum Stress in Yeast.
M. Bonilla and K. W. Cunningham (2003)
Mol. Biol. Cell 14, 4296-4305
   Abstract »    Full Text »    PDF »
The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane.
R. H. Valdivia and R. Schekman (2003)
PNAS 100, 10287-10292
   Abstract »    Full Text »    PDF »
A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway.
R. Green, G. Lesage, A.-M. Sdicu, P. Menard, and H. Bussey (2003)
Microbiology 149, 2487-2499
   Abstract »    Full Text »    PDF »
Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae.
M. Abe, H. Qadota, A. Hirata, and Y. Ohya (2003)
J. Cell Biol. 162, 85-97
   Abstract »    Full Text »    PDF »
Members of the Evolutionarily Conserved PMT Family of ProteinO-Mannosyltransferases Form Distinct Protein Complexes among Themselves.
V. Girrbach and S. Strahl (2003)
J. Biol. Chem. 278, 12554-12562
   Abstract »    Full Text »    PDF »
Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase.
Z. Torok, N. M. Tsvetkova, G. Balogh, I. Horvath, E. Nagy, Z. Penzes, J. Hargitai, O. Bensaude, P. Csermely, J. H. Crowe, et al. (2003)
PNAS 100, 3131-3136
   Abstract »    Full Text »    PDF »
A Saccharomyces cerevisiae Genome-Wide Mutant Screen for Altered Sensitivity to K1 Killer Toxin.
N. Page, M. Gerard-Vincent, P. Menard, M. Beaulieu, M. Azuma, G. J. P. Dijkgraaf, H. Li, J. Marcoux, T. Nguyen, T. Dowse, et al. (2003)
Genetics 163, 875-894
   Abstract »    Full Text »    PDF »
Rvs161p and Sphingolipids Are Required for Actin Repolarization following Salt Stress.
A. Balguerie, M. Bagnat, M. Bonneu, M. Aigle, and A. M. Breton (2002)
Eukaryot. Cell 1, 1021-1031
   Abstract »    Full Text »    PDF »
Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids.
T. Willer, W. Amselgruber, R. Deutzmann, and S. Strahl (2002)
Glycobiology 12, 771-783
   Abstract »    Full Text »    PDF »
Regulation of the Cell Integrity Pathway by Rapamycin-sensitive TOR Function in Budding Yeast.
J. Torres, C. J. Di Como, E. Herrero, and M. A. de la Torre-Ruiz (2002)
J. Biol. Chem. 277, 43495-43504
   Abstract »    Full Text »    PDF »
Maintenance of Mating Cell Integrity Requires the Adhesin Fig2p.
M. Zhang, D. Bennett, and S. E. Erdman (2002)
Eukaryot. Cell 1, 811-822
   Abstract »    Full Text »    PDF »
Dissection of Upstream Regulatory Components of the Rho1p Effector, 1,3-{beta}-Glucan Synthase, in Saccharomyces cerevisiae.
M. Sekiya-Kawasaki, M. Abe, A. Saka, D. Watanabe, K. Kono, M. Minemura-Asakawa, S. Ishihara, T. Watanabe, and Y. Ohya (2002)
Genetics 162, 663-676
   Abstract »    Full Text »    PDF »
Sit4 Is Required for Proper Modulation of the Biological Functions Mediated by Pkc1 and the Cell Integrity Pathway in Saccharomyces cerevisiae.
M. Angeles de la Torre-Ruiz, J. Torres, J. Arino, and E. Herrero (2002)
J. Biol. Chem. 277, 33468-33476
   Abstract »    Full Text »    PDF »
Regulation of the Saccharomyces cerevisiae Slt2 Kinase Pathway by the Stress-inducible Sdp1 Dual Specificity Phosphatase.
J.-S. Hahn and D. J. Thiele (2002)
J. Biol. Chem. 277, 21278-21284
   Abstract »    Full Text »    PDF »
Osmotic Stress Signaling and Osmoadaptation in Yeasts.
S. Hohmann (2002)
Microbiol. Mol. Biol. Rev. 66, 300-372
   Abstract »    Full Text »    PDF »
Yeast RSC Function Is Required for Organization of the Cellular Cytoskeleton via an Alternative PKC1 Pathway.
B. Chai, J.-m. Hsu, J. Du, and B. C. Laurent (2002)
Genetics 161, 575-584
   Abstract »    Full Text »    PDF »
Outside-In Signaling of Cellulose Synthesis by a Spore Coat Protein in Dictyostelium.
C. M. West, P. Zhang, A. C. McGlynn, and L. Kaplan (2002)
Eukaryot. Cell 1, 281-292
   Abstract »    Full Text »    PDF »
Yeast Protein Kinases and the RHO1 Exchange Factor TUS1 Are Novel Components of the Cell Integrity Pathway in Yeast.
T. Schmelzle, S. B. Helliwell, and M. N. Hall (2002)
Mol. Cell. Biol. 22, 1329-1339
   Abstract »    Full Text »    PDF »
Calcineurin is essential for survival during membrane stress in Candida albicans.
M. C. Cruz, A. L. Goldstein, J. R. Blankenship, M. Del Poeta, D. Davis, M. E. Cardenas, J. R. Perfect, J. H. McCusker, and J. Heitman (2002)
EMBO J. 21, 546-559
   Abstract »    Full Text »    PDF »
Yeast Rpi1 Is a Putative Transcriptional Regulator That Contributes to Preparation for Stationary Phase.
A. K. Sobering, U. S. Jung, K. S. Lee, and D. E. Levin (2002)
Eukaryot. Cell 1, 56-65
   Abstract »    Full Text »    PDF »
Overactivation of the Protein Kinase C-Signaling Pathway Suppresses the Defects of Cells Lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae.
G. de Bettignies, D. Thoraval, C. Morel, M. F. Peypouquet, and M. Crouzet (2001)
Genetics 159, 1435-1448
   Abstract »    Full Text »    PDF »
Fungal Histidine Kinases.
J. L. Santos and K. Shiozaki (2001)
Sci. STKE 2001, re1
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882