Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 21 (13): 4246-4255

Copyright © 2001 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, July 2001, p. 4246-4255, Vol. 21, No. 13
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.13.4246-4255.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

Evidence of p53-Dependent Cross-Talk between Ribosome Biogenesis and the Cell Cycle: Effects of Nucleolar Protein Bop1 on G1/S Transition

Dimitri G. Pestov, Zaklina Strezoska, and Lester F. Lau*

Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607-7170

Received 12 February 2001/Returned for modification 22 March 2001/Accepted 2 April 2001

Bop1 is a novel nucleolar protein involved in rRNA processing and ribosome assembly. We have previously shown that expression of Bop1Delta , an amino-terminally truncated Bop1 that acts as a dominant negative mutant in mouse cells, results in inhibition of 28S and 5.8S rRNA formation and deficiency of newly synthesized 60S ribosomal subunits (Z. Strezoska, D. G. Pestov, and L. F. Lau, Mol. Cell. Biol. 20:5516-5528, 2000). Perturbation of Bop1 activities by Bop1Delta also induces a powerful yet reversible cell cycle arrest in 3T3 fibroblasts. In the present study, we show that asynchronously growing cells are arrested by Bop1Delta in a highly concerted fashion in the G1 phase. Kinase activities of the G1-specific Cdk2 and Cdk4 complexes were downregulated in cells expressing Bop1Delta , whereas levels of the Cdk inhibitors p21 and p27 were concomitantly increased. The cells also displayed lack of hyperphosphorylation of retinoblastoma protein (pRb) and decreased expression of cyclin A, indicating their inability to progress through the restriction point. Inactivation of functional p53 abrogated this Bop1Delta -induced cell cycle arrest but did not restore normal rRNA processing. These findings show that deficiencies in ribosome synthesis can be uncoupled from cell cycle arrest and reveal a new role for the p53 pathway as a mediator of the signaling link between ribosome biogenesis and the cell cycle. We propose that aberrant rRNA processing and/or ribosome biogenesis may cause "nucleolar stress," leading to cell cycle arrest in a p53-dependent manner.

* Corresponding author. Mailing address: Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, 900 S. Ashland Avenue, Chicago, IL 60607-7170. Phone: (312) 996-6978. Fax: (312) 996-7034. E-mail: lflau{at}

Molecular and Cellular Biology, July 2001, p. 4246-4255, Vol. 21, No. 13
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.13.4246-4255.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

Balanced Production of Ribosome Components Is Required for Proper G1/S Transition in Saccharomyces cerevisiae.
F. Gomez-Herreros, O. Rodriguez-Galan, M. Morillo-Huesca, D. Maya, M. Arista-Romero, J. de la Cruz, S. Chavez, and M. C. Munoz-Centeno (2013)
J. Biol. Chem. 288, 31689-31700
   Abstract »    Full Text »    PDF »
RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1{alpha} depletion in Medicago truncatula.
M. Dona, M. Confalonieri, A. Minio, M. Biggiogera, A. Buttafava, E. Raimondi, M. Delledonne, L. Ventura, M. E. Sabatini, A. Macovei, et al. (2013)
J. Exp. Bot. 64, 1941-1951
   Abstract »    Full Text »    PDF »
Mammalian HCA66 protein is required for both ribosome synthesis and centriole duplication.
C. Bonnart, M. Gerus, C. Hoareau-Aveilla, T. Kiss, M. Caizergues-Ferrer, Y. Henry, and A. K. Henras (2012)
Nucleic Acids Res. 40, 6270-6289
   Abstract »    Full Text »    PDF »
Scission of the p53-MDM2 Loop by Ribosomal Proteins.
X. Zhou, J.-M. Liao, W.-J. Liao, and H. Lu (2012)
Genes & Cancer 3, 298-310
   Abstract »    Full Text »    PDF »
Rad9B responds to nucleolar stress through ATR and JNK signalling, and delays the G1-S transition.
A. J. Perez-Castro and R. Freire (2012)
J. Cell Sci. 125, 1152-1164
   Abstract »    Full Text »    PDF »
Identification of DHX33 as a Mediator of rRNA Synthesis and Cell Growth.
Y. Zhang, J. T. Forys, A. P. Miceli, A. S. Gwinn, and J. D. Weber (2011)
Mol. Cell. Biol. 31, 4676-4691
   Abstract »    Full Text »    PDF »
Hydrophilic Residues Are Crucial for Ribosomal Protein L11 (RPL11) Interaction with Zinc Finger Domain of MDM2 and p53 Protein Activation.
Q. Zhang, H. Xiao, S. C. Chai, Q. Q. Hoang, and H. Lu (2011)
J. Biol. Chem. 286, 38264-38274
   Abstract »    Full Text »    PDF »
ZNF668 Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer.
R. Hu, G. Peng, H. Dai, E.-K. Breuer, K. Stemke-Hale, K. Li, A. M. Gonzalez-Angulo, G. B. Mills, and S.-Y. Lin (2011)
Cancer Res. 71, 6524-6534
   Abstract »    Full Text »    PDF »
Selective inhibition of rRNA transcription downregulates E2F-1: a new p53-independent mechanism linking cell growth to cell proliferation.
G. Donati, E. Brighenti, M. Vici, G. Mazzini, D. Trere, L. Montanaro, and M. Derenzini (2011)
J. Cell Sci. 124, 3017-3028
   Abstract »    Full Text »    PDF »
Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML.
E. M. Payne, N. Bolli, J. Rhodes, O. I. Abdel-Wahab, R. Levine, C. V. Hedvat, R. Stone, A. Khanna-Gupta, H. Sun, J. P. Kanki, et al. (2011)
Blood 118, 903-915
   Abstract »    Full Text »    PDF »
The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine.
C. Deisenroth and Y. Zhang (2011)
Genes & Cancer 2, 392-403
   Abstract »    Full Text »    PDF »
PAK1IP1, a ribosomal stress-induced nucleolar protein, regulates cell proliferation via the p53-MDM2 loop.
W. Yu, Z. Qiu, N. Gao, L. Wang, H. Cui, Y. Qian, L. Jiang, J. Luo, Z. Yi, H. Lu, et al. (2011)
Nucleic Acids Res. 39, 2234-2248
   Abstract »    Full Text »    PDF »
G1/S Transcription Factor Orthologues Swi4p and Swi6p Are Important but Not Essential for Cell Proliferation and Influence Hyphal Development in the Fungal Pathogen Candida albicans.
B. Hussein, H. Huang, A. Glory, A. Osmani, S. Kaminskyj, A. Nantel, and C. Bachewich (2011)
Eukaryot. Cell 10, 384-397
   Abstract »    Full Text »    PDF »
A Small Ribosomal Subunit (SSU) Processome Component, the Human U3 Protein 14A (hUTP14A) Binds p53 and Promotes p53 Degradation.
L. Hu, J. Wang, Y. Liu, Y. Zhang, L. Zhang, R. Kong, Z. Zheng, X. Du, and Y. Ke (2011)
J. Biol. Chem. 286, 3119-3128
   Abstract »    Full Text »    PDF »
Quantitative Proteome Analysis of Pluripotent Cells by iTRAQ Mass Tagging Reveals Post-transcriptional Regulation of Proteins Required for ES Cell Self-renewal.
R. N. O'Brien, Z. Shen, K. Tachikawa, P. A. Lee, and S. P. Briggs (2010)
Mol. Cell. Proteomics 9, 2238-2251
   Abstract »    Full Text »    PDF »
Las1L Is a Nucleolar Protein Required for Cell Proliferation and Ribosome Biogenesis.
C. D. Castle, E. K. Cassimere, J. Lee, and C. Denicourt (2010)
Mol. Cell. Biol. 30, 4404-4414
   Abstract »    Full Text »    PDF »
Deficiency in a Glutamine-Specific Methyltransferase for Release Factor Causes Mouse Embryonic Lethality.
P. Liu, S. Nie, B. Li, Z.-Q. Yang, Z.-M. Xu, J. Fei, C. Lin, R. Zeng, and G.-L. Xu (2010)
Mol. Cell. Biol. 30, 4245-4253
   Abstract »    Full Text »    PDF »
Ubiquitin and Ubiquitin-Like Proteins in the Nucleolus: Multitasking Tools for a Ribosome Factory.
N. Shcherbik and D. G. Pestov (2010)
Genes & Cancer 1, 681-689
   Abstract »    Full Text »    PDF »
Ribosomal 18 S RNA Processing by the IGF-I-responsive WDR3 Protein Is Integrated with p53 Function in Cancer Cell Proliferation.
M. McMahon, V. Ayllon, K. I. Panov, and R. O'Connor (2010)
J. Biol. Chem. 285, 18309-18318
   Abstract »    Full Text »    PDF »
Deregulation of oncogene-induced senescence and p53 translational control in X-linked dyskeratosis congenita.
C. Bellodi, N. Kopmar, and D. Ruggero (2010)
EMBO J. 29, 1865-1876
   Abstract »    Full Text »    PDF »
Defects in 18 S or 28 S rRNA Processing Activate the p53 Pathway.
M. Holzel, M. Orban, J. Hochstatter, M. Rohrmoser, T. Harasim, A. Malamoussi, E. Kremmer, G. Langst, and D. Eick (2010)
J. Biol. Chem. 285, 6364-6370
   Abstract »    Full Text »    PDF »
Dyskerin Ablation in Mouse Liver Inhibits rRNA Processing and Cell Division.
J. Ge, D. A. Rudnick, J. He, D. L. Crimmins, J. H. Ladenson, M. Bessler, and P. J. Mason (2010)
Mol. Cell. Biol. 30, 413-422
   Abstract »    Full Text »    PDF »
Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome.
J. B. Moore IV, J. E. Farrar, R. J. Arceci, J. M. Liu, and S. R. Ellis (2010)
Haematologica 95, 57-64
   Abstract »    Full Text »    PDF »
The p53 Tumor Suppressor Causes Congenital Malformations in Rpl24-Deficient Mice and Promotes Their Survival.
M. Barkic, S. Crnomarkovic, K. Grabusic, I. Bogetic, L. Panic, S. Tamarut, M. Cokaric, I. Jeric, S. Vidak, and S. Volarevic (2009)
Mol. Cell. Biol. 29, 2489-2504
   Abstract »    Full Text »    PDF »
In search of nonribosomal nucleolar protein function and regulation.
T. Pederson and R. Y.L. Tsai (2009)
J. Cell Biol. 184, 771-776
   Abstract »    Full Text »    PDF »
The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation.
J. Shen, L. E. Cowen, A. M. Griffin, L. Chan, and J. R. Kohler (2008)
PNAS 105, 20918-20923
   Abstract »    Full Text »    PDF »
Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family.
N. Danilova, K. M. Sakamoto, and S. Lin (2008)
Blood 112, 5228-5237
   Abstract »    Full Text »    PDF »
Aberrant Expression of Nucleostemin Activates p53 and Induces Cell Cycle Arrest via Inhibition of MDM2.
M.-S. Dai, X.-X. Sun, and H. Lu (2008)
Mol. Cell. Biol. 28, 4365-4376
   Abstract »    Full Text »    PDF »
Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function.
M. E. Castro, J. F.M. Leal, M. E. Lleonart, S. Ramon y Cajal, and A. Carnero (2008)
Carcinogenesis 29, 1343-1350
   Abstract »    Full Text »    PDF »
Mycophenolic Acid Activation of p53 Requires Ribosomal Proteins L5 and L11.
X.-X. Sun, M.-S. Dai, and H. Lu (2008)
J. Biol. Chem. 283, 12387-12392
   Abstract »    Full Text »    PDF »
Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder.
V. Choesmel, S. Fribourg, A.-H. Aguissa-Toure, N. Pinaud, P. Legrand, H. T. Gazda, and P.-E. Gleizes (2008)
Hum. Mol. Genet. 17, 1253-1263
   Abstract »    Full Text »    PDF »
The Oncoprotein SS18-SSX1 Promotes p53 Ubiquitination and Degradation by Enhancing HDM2 Stability.
P. D'Arcy, W. Maruwge, B. A. Ryan, and B. Brodin (2008)
Mol. Cancer Res. 6, 127-138
   Abstract »    Full Text »    PDF »
Restricting Conformational Flexibility of the Switch II Region Creates a Dominant-Inhibitory Phenotype in Obg GTPase Nog1.
Y. R. Lapik, J. M. Misra, L. F. Lau, and D. G. Pestov (2007)
Mol. Cell. Biol. 27, 7735-7744
   Abstract »    Full Text »    PDF »
Molecular basis of Diamond Blackfan anemia: structure and function analysis of RPS19.
L. A. Gregory, A.-H. Aguissa-Toure, N. Pinaud, P. Legrand, P.-E. Gleizes, and S. Fribourg (2007)
Nucleic Acids Res. 35, 5913-5921
   Abstract »    Full Text »    PDF »
The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis.
M. E. Griffith, U. Mayer, A. Capron, Q. A. Ngo, A. Surendrarao, R. McClinton, G. Jurgens, and V. Sundaresan (2007)
PLANT CELL 19, 2246-2263
   Abstract »    Full Text »    PDF »
Depletion of the Nucleolar Protein Nucleostemin Causes G1 Cell Cycle Arrest via the p53 Pathway.
H. Ma and T. Pederson (2007)
Mol. Biol. Cell 18, 2630-2635
   Abstract »    Full Text »    PDF »
Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation.
C. Jalal, H. Uhlmann-Schiffler, and H. Stahl (2007)
Nucleic Acids Res. 35, 3590-3601
   Abstract »    Full Text »    PDF »
Interdependence of Pes1, Bop1, and WDR12 Controls Nucleolar Localization and Assembly of the PeBoW Complex Required for Maturation of the 60S Ribosomal Subunit.
M. Rohrmoser, M. Holzel, T. Grimm, A. Malamoussi, T. Harasim, M. Orban, I. Pfisterer, A. Gruber-Eber, E. Kremmer, and D. Eick (2007)
Mol. Cell. Biol. 27, 3682-3694
   Abstract »    Full Text »    PDF »
5-Fluorouracil Activation of p53 Involves an MDM2-Ribosomal Protein Interaction.
X.-X. Sun, M.-S. Dai, and H. Lu (2007)
J. Biol. Chem. 282, 8052-8059
   Abstract »    Full Text »    PDF »
Ribosome Biogenesis Is Sensed at the Start Cell Cycle Checkpoint.
K. A. Bernstein, F. Bleichert, J. M. Bean, F. R. Cross, and S. J. Baserga (2007)
Mol. Biol. Cell 18, 953-964
   Abstract »    Full Text »    PDF »
Rapid conditional knock-down-knock-in system for mammalian cells.
M. Holzel, M. Rohrmoser, M. Orban, C. Homig, T. Harasim, A. Malamoussi, A. Gruber-Eber, V. Heissmeyer, G. Bornkamm, and D. Eick (2007)
Nucleic Acids Res. 35, e17
   Abstract »    Full Text »    PDF »
The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing.
M. Holzel, T. Grimm, M. Rohrmoser, A. Malamoussi, T. Harasim, A. Gruber-Eber, E. Kremmer, and D. Eick (2007)
Nucleic Acids Res. 35, 789-800
   Abstract »    Full Text »    PDF »
Impaired ribosome biogenesis in Diamond-Blackfan anemia.
V. Choesmel, D. Bacqueville, J. Rouquette, J. Noaillac-Depeyre, S. Fribourg, A. Cretien, T. Leblanc, G. Tchernia, L. Da Costa, and P.-E. Gleizes (2007)
Blood 109, 1275-1283
   Abstract »    Full Text »    PDF »
Physical and Functional Interaction of the p14ARF Tumor Suppressor with Ribosomes.
H. Rizos, H. A. McKenzie, A. L. Ayub, S. Woodruff, T. M. Becker, L. L. Scurr, J. Stahl, and R. F. Kefford (2006)
J. Biol. Chem. 281, 38080-38088
   Abstract »    Full Text »    PDF »
Ribosomal Protein S6 Gene Haploinsufficiency Is Associated with Activation of a p53-Dependent Checkpoint during Gastrulation.
L. Panic, S. Tamarut, M. Sticker-Jantscheff, M. Barkic, D. Solter, M. Uzelac, K. Grabusic, and S. Volarevic (2006)
Mol. Cell. Biol. 26, 8880-8891
   Abstract »    Full Text »    PDF »
MDMX regulation of p53 response to ribosomal stress.
D. M. Gilkes, L. Chen, and J. Chen (2006)
EMBO J. 25, 5614-5625
   Abstract »    Full Text »    PDF »
A Survey of Essential Gene Function in the Yeast Cell Division Cycle.
L. Yu, L. P. Castillo, S. Mnaimneh, T. R. Hughes, and G. W. Brown (2006)
Mol. Biol. Cell 17, 4736-4747
   Abstract »    Full Text »    PDF »
Targeted Comparative RNA Interference Analysis Reveals Differential Requirement of Genes Essential for Cell Proliferation.
Y. J. Machida, Y. Chen, Y. Machida, A. Malhotra, S. Sarkar, and A. Dutta (2006)
Mol. Biol. Cell 17, 4837-4845
   Abstract »    Full Text »    PDF »
Ribosomal Stress Couples the Unfolded Protein Response to p53-dependent Cell Cycle Arrest.
F. Zhang, R. B. Hamanaka, E. Bobrovnikova-Marjon, J. D. Gordan, M.-S. Dai, H. Lu, M. C. Simon, and J. A. Diehl (2006)
J. Biol. Chem. 281, 30036-30045
   Abstract »    Full Text »    PDF »
Regulation of the MDM2-p53 Pathway by Ribosomal Protein L11 Involves a Post-ubiquitination Mechanism.
M.-S. Dai, D. Shi, Y. Jin, X.-X. Sun, Y. Zhang, S. R. Grossman, and H. Lu (2006)
J. Biol. Chem. 281, 24304-24313
   Abstract »    Full Text »    PDF »
Ribosomes and marrow failure: coincidental association or molecular paradigm?.
J. M. Liu and S. R. Ellis (2006)
Blood 107, 4583-4588
   Abstract »    Full Text »    PDF »
Perturbation of rRNA Synthesis in the bap28 Mutation Leads to Apoptosis Mediated by p53 in the Zebrafish Central Nervous System.
M. Azuma, R. Toyama, E. Laver, and I. B. Dawid (2006)
J. Biol. Chem. 281, 13309-13316
   Abstract »    Full Text »    PDF »
Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response.
S. Sulic, L. Panic, M. Barkic, M. Mercep, M. Uzelac, and S. Volarevic (2005)
Genes & Dev. 19, 3070-3082
   Abstract »    Full Text »    PDF »
Ytm1, Nop7, and Erb1 Form a Complex Necessary for Maturation of Yeast 66S Preribosomes.
T. D. Miles, J. Jakovljevic, E. W. Horsey, P. Harnpicharnchai, L. Tang, and J. L. Woolford Jr (2005)
Mol. Cell. Biol. 25, 10419-10432
   Abstract »    Full Text »    PDF »
mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators.
G. A. Nader, T. J. McLoughlin, and K. A. Esser (2005)
Am J Physiol Cell Physiol 289, C1457-C1465
   Abstract »    Full Text »    PDF »
Stringent doxycycline-dependent control of gene activities using an episomal one-vector system.
G. W. Bornkamm, C. Berens, C. Kuklik-Roos, J.-M. Bechet, G. Laux, J. Bachl, M. Korndoerfer, M. Schlee, M. Holzel, A. Malamoussi, et al. (2005)
Nucleic Acids Res. 33, e137
   Abstract »    Full Text »    PDF »
Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation.
M. Holzel, M. Rohrmoser, M. Schlee, T. Grimm, T. Harasim, A. Malamoussi, A. Gruber-Eber, E. Kremmer, W. Hiddemann, G. W. Bornkamm, et al. (2005)
J. Cell Biol. 170, 367-378
   Abstract »    Full Text »    PDF »
Tracking the Interactions of rRNA Processing Proteins during Nucleolar Assembly in Living Cells.
N. Angelier, M. Tramier, E. Louvet, M. Coppey-Moisan, T. M. Savino, J. R. De Mey, and D. Hernandez-Verdun (2005)
Mol. Biol. Cell 16, 2862-2871
   Abstract »    Full Text »    PDF »
5-Fluorouracil Enhances Exosome-Dependent Accumulation of Polyadenylated rRNAs.
F. Fang, J. Hoskins, and J. S. Butler (2004)
Mol. Cell. Biol. 24, 10766-10776
   Abstract »    Full Text »    PDF »
Nucleolar Size and Activity Are Related to pRb and p53 Status in Human Breast Cancer.
D. Trere, C. Ceccarelli, L. Montanaro, E. Tosti, and M. Derenzini (2004)
Journal of Histochemistry & Cytochemistry 52, 1601-1607
   Abstract »    Full Text »    PDF »
The Small Subunit Processome Is Required for Cell Cycle Progression at G1.
K. A. Bernstein and S. J. Baserga (2004)
Mol. Biol. Cell 15, 5038-5046
   Abstract »    Full Text »    PDF »
Inhibition of MDM2-mediated p53 Ubiquitination and Degradation by Ribosomal Protein L5.
M.-S. Dai and H. Lu (2004)
J. Biol. Chem. 279, 44475-44482
   Abstract »    Full Text »    PDF »
What better measure than ribosome synthesis?.
D. Rudra and J. R. Warner (2004)
Genes & Dev. 18, 2431-2436
   Full Text »    PDF »
A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size.
P. Jorgensen, I. Rupes, J. R. Sharom, L. Schneper, J. R. Broach, and M. Tyers (2004)
Genes & Dev. 18, 2491-2505
   Abstract »    Full Text »    PDF »
Ribosomal Protein L23 Activates p53 by Inhibiting MDM2 Function in Response to Ribosomal Perturbation but Not to Translation Inhibition.
M.-S. Dai, S. X. Zeng, Y. Jin, X.-X. Sun, L. David, and H. Lu (2004)
Mol. Cell. Biol. 24, 7654-7668
   Abstract »    Full Text »    PDF »
Inhibition of HDM2 and Activation of p53 by Ribosomal Protein L23.
A. Jin, K. Itahana, K. O'Keefe, and Y. Zhang (2004)
Mol. Cell. Biol. 24, 7669-7680
   Abstract »    Full Text »    PDF »
Npa1p is an essential trans-acting factor required for an early step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae.
I. V. ROSADO and J. DE LA CRUZ (2004)
RNA 10, 1073-1083
   Abstract »    Full Text »    PDF »
Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation.
K. P. Bhat, K. Itahana, A. Jin, and Y. Zhang (2004)
EMBO J. 23, 2402-2412
   Abstract »    Full Text »    PDF »
Silencing of RNA Helicase II/Gu{alpha} Inhibits Mammalian Ribosomal RNA Production.
D. Henning, R. B. So, R. Jin, L. F. Lau, and B. C. Valdez (2003)
J. Biol. Chem. 278, 52307-52314
   Abstract »    Full Text »    PDF »
Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses.
C. P. Rubbi and J. Milner (2003)
EMBO J. 22, 6068-6077
   Abstract »    Full Text »    PDF »
A role for c-Myc in the regulation of ribosomal RNA processing.
I. Schlosser, M. Holzel, M. Murnseer, H. Burtscher, U. H. Weidle, and D. Eick (2003)
Nucleic Acids Res. 31, 6148-6156
   Abstract »    Full Text »    PDF »
Pescadillo Is Essential for Nucleolar Assembly, Ribosome Biogenesis, and Mammalian Cell Proliferation.
A. Lerch-Gaggl, J. Haque, J. Li, G. Ning, P. Traktman, and S. A. Duncan (2002)
J. Biol. Chem. 277, 45347-45355
   Abstract »    Full Text »    PDF »
Forkhead-associated Domains of the Tobacco NtFHA1 Transcription Activator and the Yeast Fhl1 Forkhead Transcription Factor Are Functionally Conserved.
M. Kim, J.-W. Ahn, K. Song, K.-H. Paek, and H.-S. Pai (2002)
J. Biol. Chem. 277, 38781-38790
   Abstract »    Full Text »    PDF »
Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1.
B. M. Iritani, J. Delrow, C. Grandori, I. Gomez, M. Klacking, L. S. Carlos, and R. N. Eisenman (2002)
EMBO J. 21, 4820-4830
   Abstract »    Full Text »    PDF »
Functional Inactivation of the Mouse Nucleolar Protein Bop1 Inhibits Multiple Steps in Pre-rRNA Processing and Blocks Cell Cycle Progression.
Z. Strezoska, D. G. Pestov, and L. F. Lau (2002)
J. Biol. Chem. 277, 29617-29625
   Abstract »    Full Text »    PDF »
Inhibition of cell proliferation and induction of apoptosis by Helicobacter pylori through increased phosphorylated p53, p21 and Bax expression in endothelial cells.
J. Med. Microbiol. 51, 385-391
   Abstract »    Full Text »    PDF »
Ribosomal Protein S25 mRNA Partners with MTF-1 and La to Provide a p53-mediated Mechanism for Survival or Death.
T. Adilakshmi and R. O. Laine (2002)
J. Biol. Chem. 277, 4147-4151
   Abstract »    Full Text »    PDF »
ERB1, the yeast homolog of mammalian Bop1, is an essential gene required for maturation of the 25S and 5.8S ribosomal RNAs.
D. G. Pestov, M. G. Stockelman, Z. Strezoska, and L. F. Lau (2001)
Nucleic Acids Res. 29, 3621-3630
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882