Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 21 (17): 6071-6079

Copyright © 2001 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, September 2001, p. 6071-6079, Vol. 21, No. 17
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.17.6071-6079.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

HERP, a New Primary Target of Notch Regulated by Ligand Binding

Tatsuya Iso,1,2 Vittorio Sartorelli,3 Gene Chung,1 Toshiaki Shichinohe,1,4 Larry Kedes,1,2,5,* and Yasuo Hamamori1,2,*

Institute for Genetic Medicine,1 Department of Biochemistry and Molecular Biology,2 Department of Pathology,4 and Department of Medicine,5 Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9075, and Laboratory of Muscle Biology, Muscle Gene Expression Group, NIAMS-IRP, National Institutes of Health, Bethesda, Maryland 208923

Received 31 January 2001/Returned for modification 19 March 2001/Accepted 21 May 2001

Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Ligand binding initiates the signal through regulated intramembrane proteolysis of a transmembrane Notch receptor which releases the signal-transducing Notch intracellular domain (NICD). The HES/E(spl) gene family is a primary target of Notch and thus far the only known Notch effector. A newly isolated HERP family, a HES-related basic helix-loop-helix protein family, has been proposed as a potential target of Notch, based on its induction following NICD overexpression. However, NICD is physiologically maintained at an extremely low level that typically escapes detection, and therefore, nonregulated overexpression of NICD---as in transient transfection---has the potential of generating cellular responses of little physiological relevance. Indeed, a constitutively active NICD indiscriminately up-regulates expression of both HERP1 and HERP2 mRNAs. However, physiological Notch stimulation through ligand binding results in the selective induction of HERP2 but not HERP1 mRNA and causes only marginal up-regulation of HES1 mRNA. Importantly, HERP2 is an immediate target gene of Notch signaling since HERP2 mRNA expression is induced even in the absence of de novo protein synthesis. HERP2 mRNA induction is accompanied by specific expression of HERP2 protein in the nucleus. Furthermore, using RBP-Jk-deficient cells, we show that an RBP-Jk protein, a transcription factor that directly activates HES/E(spl) transcription, also is essential for HERP2 mRNA expression and that expression of exogenous RBP-Jk is sufficient to rescue HERP2 mRNA expression. These data establish that HERP2 is a novel primary target gene of Notch that, together with HES, may effect diverse biological activities of Notch.


* Corresponding author. Mailing address for Larry Kedes: 2250 Alcazar St., Los Angeles, CA 90089. Phone: (323) 442-1144. Fax: (323) 442-2764. E-mail: kedes{at}hsc.usc.edu. Present address for Yasuo Hamamori: One Baylor Plaza, 506C, Houston, TX 77030. Phone: (713) 798-3088. Fax: (713) 798-7437. E-mail: hamamori{at}bcm.tmc.edu.


Molecular and Cellular Biology, September 2001, p. 6071-6079, Vol. 21, No. 17
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.17.6071-6079.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Notch Signaling in Osteocytes Differentially Regulates Cancellous and Cortical Bone Remodeling.
E. Canalis, D. J. Adams, A. Boskey, K. Parker, L. Kranz, and S. Zanotti (2013)
J. Biol. Chem. 288, 25614-25625
   Abstract »    Full Text »    PDF »
Hesr2 Knockout Mice Develop Aortic Valve Disease With Advancing Age.
H. Kokubo, S. Miyagawa-Tomita, Y. Nakashima, T. Kume, M. Yoshizumi, T. Nakanishi, and Y. Saga (2013)
Arterioscler Thromb Vasc Biol 33, e84-e92
   Abstract »    Full Text »    PDF »
Nuclear Factor of Activated T-cells (NFAT)c2 Inhibits Notch Receptor Signaling in Osteoblasts.
S. Zanotti, A. Smerdel-Ramoya, and E. Canalis (2013)
J. Biol. Chem. 288, 624-632
   Abstract »    Full Text »    PDF »
Transcription factor CHF1/Hey2 regulates EC coupling and heart failure in mice through regulation of FKBP12.6.
Y. Liu, F. S. Korte, F. Moussavi-Harami, M. Yu, M. Razumova, M. Regnier, and M. T. Chin (2012)
Am J Physiol Heart Circ Physiol 302, H1860-H1870
   Abstract »    Full Text »    PDF »
Notch Signaling Pathway Enhances Bone Morphogenetic Protein 2 (BMP2) Responsiveness of Msx2 Gene to Induce Osteogenic Differentiation and Mineralization of Vascular Smooth Muscle Cells.
T. Shimizu, T. Tanaka, T. Iso, H. Matsui, Y. Ooyama, K. Kawai-Kowase, M. Arai, and M. Kurabayashi (2011)
J. Biol. Chem. 286, 19138-19148
   Abstract »    Full Text »    PDF »
Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway.
X. Tong, H. Gui, F. Jin, B. W. Heck, P. Lin, J. Ma, J. D. Fondell, and C.-C. Tsai (2011)
EMBO Rep. 12, 428-435
   Abstract »    Full Text »    PDF »
Reciprocal Regulation of Notch and Nuclear Factor of Activated T-cells (NFAT) c1 Transactivation in Osteoblasts.
S. Zanotti, A. Smerdel-Ramoya, and E. Canalis (2011)
J. Biol. Chem. 286, 4576-4588
   Abstract »    Full Text »    PDF »
An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells.
J. Kang, J. Yoo, S. Lee, W. Tang, B. Aguilar, S. Ramu, I. Choi, H. H. Otu, J. W. Shin, G. P. Dotto, et al. (2010)
Blood 116, 140-150
   Abstract »    Full Text »    PDF »
The bHLH transcription factor CHF1/Hey2 regulates susceptibility to apoptosis and heart failure after pressure overload.
Y. Liu, M. Yu, L. Wu, and M. T. Chin (2010)
Am J Physiol Heart Circ Physiol 298, H2082-H2092
   Abstract »    Full Text »    PDF »
The Notch Effector Hey1 Associates with Myogenic Target Genes to Repress Myogenesis.
M. F. Buas, S. Kabak, and T. Kadesch (2010)
J. Biol. Chem. 285, 1249-1258
   Abstract »    Full Text »    PDF »
Kaposi's Sarcoma-Associated Herpesvirus RTA Promotes Degradation of the Hey1 Repressor Protein through the Ubiquitin Proteasome Pathway.
F. Gould, S. M. Harrison, E. W. Hewitt, and A. Whitehouse (2009)
J. Virol. 83, 6727-6738
   Abstract »    Full Text »    PDF »
Notch and Vascular Smooth Muscle Cell Phenotype.
D. Morrow, S. Guha, C. Sweeney, Y. Birney, T. Walshe, C. O'Brien, D. Walls, E. M. Redmond, and P. A. Cahill (2008)
Circ. Res. 103, 1370-1382
   Abstract »    Full Text »    PDF »
Connective Tissue Growth Factor Enhances Osteoblastogenesis in Vitro.
A. Smerdel-Ramoya, S. Zanotti, V. Deregowski, and E. Canalis (2008)
J. Biol. Chem. 283, 22690-22699
   Abstract »    Full Text »    PDF »
Downregulation by lipopolysaccharide of Notch signaling, via nitric oxide.
M.-Y. Kim, J.-H. Park, J.-S. Mo, E.-J. Ann, S.-O. Han, S.-H. Baek, K.-J. Kim, S.-Y. Im, J.-W. Park, E.-J. Choi, et al. (2008)
J. Cell Sci. 121, 1466-1476
   Abstract »    Full Text »    PDF »
Notch Signaling in Osteoblasts.
E. Canalis (2008)
Science Signaling 1, pe17
   Abstract »    Full Text »    PDF »
Atorvastatin Promotes Presenilin-1 Expression and Notch1 Activity and Increases Neural Progenitor Cell Proliferation After Stroke.
J. Chen, A. Zacharek, A. Li, X. Cui, C. Roberts, M. Lu, and M. Chopp (2008)
Stroke 39, 220-226
   Abstract »    Full Text »    PDF »
Delta Notch and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors.
A. Fischer and M. Gessler (2007)
Nucleic Acids Res. 35, 4583-4596
   Abstract »    Full Text »    PDF »
Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function.
M. Xin, E. M. Small, E. van Rooij, X. Qi, J. A. Richardson, D. Srivastava, O. Nakagawa, and E. N. Olson (2007)
PNAS 104, 7975-7980
   Abstract »    Full Text »    PDF »
CHF1/Hey2 Plays a Pivotal Role in Left Ventricular Maturation Through Suppression of Ectopic Atrial Gene Expression.
N. Koibuchi and M. T. Chin (2007)
Circ. Res. 100, 850-855
   Abstract »    Full Text »    PDF »
Nuclear Calcium/Calmodulin-dependent Protein Kinase II{delta} Preferentially Transmits Signals to Histone Deacetylase 4 in Cardiac Cells.
G. H. Little, Y. Bai, T. Williams, and C. Poizat (2007)
J. Biol. Chem. 282, 7219-7231
   Abstract »    Full Text »    PDF »
Nuclear IKK activity leads to dysregulated Notch-dependent gene expression in colorectal cancer.
V. Fernandez-Majada, C. Aguilera, A. Villanueva, F. Vilardell, A. Robert-Moreno, A. Aytes, F. X. Real, G. Capella, M. W. Mayo, L. Espinosa, et al. (2007)
PNAS 104, 276-281
   Abstract »    Full Text »    PDF »
Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells.
K. Kawai-Kowase and G. K. Owens (2007)
Am J Physiol Cell Physiol 292, C59-C69
   Abstract »    Full Text »    PDF »
Androgen receptor corepressors and prostate cancer.
C. J Burd, L. M Morey, and K. E Knudsen (2006)
Endocr. Relat. Cancer 13, 979-994
   Abstract »    Full Text »    PDF »
Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors.
J. B. Rutenberg, A. Fischer, H. Jia, M. Gessler, T. P. Zhong, and M. Mercola (2006)
Development 133, 4381-4390
   Abstract »    Full Text »    PDF »
Jagged1-selective Notch Signaling Induces Smooth Muscle Differentiation via a RBP-J{kappa}-dependent Pathway.
H. Doi, T. Iso, H. Sato, M. Yamazaki, H. Matsui, T. Tanaka, I. Manabe, M. Arai, R. Nagai, and M. Kurabayashi (2006)
J. Biol. Chem. 281, 28555-28564
   Abstract »    Full Text »    PDF »
Transcription factor CHF1/Hey2 suppresses cardiac hypertrophy through an inhibitory interaction with GATA4.
F. Xiang, Y. Sakata, L. Cui, J. M. Youngblood, H. Nakagami, J. K. Liao, R. Liao, and M. T. Chin (2006)
Am J Physiol Heart Circ Physiol 290, H1997-H2006
   Abstract »    Full Text »    PDF »
Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse.
Y. Watanabe, H. Kokubo, S. Miyagawa-Tomita, M. Endo, K. Igarashi, K. i. Aisaki, J. Kanno, and Y. Saga (2006)
Development 133, 1625-1634
   Abstract »    Full Text »    PDF »
Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function.
C. K. Williams, J.-L. Li, M. Murga, A. L. Harris, and G. Tosato (2006)
Blood 107, 931-939
   Abstract »    Full Text »    PDF »
HERP1 Inhibits Myocardin-Induced Vascular Smooth Muscle Cell Differentiation by Interfering With SRF Binding to CArG Box.
H. Doi, T. Iso, M. Yamazaki, H. Akiyama, H. Kanai, H. Sato, K. Kawai-Kowase, T. Tanaka, T. Maeno, E.-i. Okamoto, et al. (2005)
Arterioscler Thromb Vasc Biol 25, 2328-2334
   Abstract »    Full Text »    PDF »
Essential Role of Endothelial Notch1 in Angiogenesis.
F. P. Limbourg, K. Takeshita, F. Radtke, R. T. Bronson, M. T. Chin, and J. K. Liao (2005)
Circulation 111, 1826-1832
   Abstract »    Full Text »    PDF »
Hey1, a Mediator of Notch Signaling, Is an Androgen Receptor Corepressor.
B. Belandia, S. M. Powell, J. M. Garcia-Pedrero, M. M. Walker, C. L. Bevan, and M. G. Parker (2005)
Mol. Cell. Biol. 25, 1425-1436
   Abstract »    Full Text »    PDF »
Hairy-related Transcription Factors Inhibit GATA-dependent Cardiac Gene Expression through a Signal-responsive Mechanism.
I. S. Kathiriya, I. N. King, M. Murakami, M. Nakagawa, J. M. Astle, K. A. Gardner, R. D. Gerard, E. N. Olson, D. Srivastava, and O. Nakagawa (2004)
J. Biol. Chem. 279, 54937-54943
   Abstract »    Full Text »    PDF »
Nuclear {beta}II-Tubulin Associates with the Activated Notch Receptor to Modulate Notch Signaling.
T.-S. Yeh, R.-H. Hsieh, S.-C. Shen, S.-H. Wang, M.-J. Tseng, C.-M. Shih, and J.-J. Lin (2004)
Cancer Res. 64, 8334-8340
   Abstract »    Full Text »    PDF »
Transcription Factor CHF1/Hey2 Regulates Neointimal Formation In Vivo and Vascular Smooth Muscle Proliferation and Migration In Vitro.
Y. Sakata, F. Xiang, Z. Chen, Y. Kiriyama, C. N. Kamei, D. I. Simon, and M. T. Chin (2004)
Arterioscler Thromb Vasc Biol 24, 2069-2074
   Abstract »    Full Text »    PDF »
Analysis of Notch1 Function by In Vitro T Cell Differentiation of Pax5 Mutant Lymphoid Progenitors.
S. Hoflinger, K. Kesavan, M. Fuxa, C. Hutter, B. Heavey, F. Radtke, and M. Busslinger (2004)
J. Immunol. 173, 3935-3944
   Abstract »    Full Text »    PDF »
Coordinated Activation of Notch, Wnt, and Transforming Growth Factor-{beta} Signaling Pathways in Bone Morphogenic Protein 2-induced Osteogenesis: Notch TARGET GENE Hey1 INHIBITS MINERALIZATION AND Runx2 TRANSCRIPTIONAL ACTIVITY.
N. Zamurovic, D. Cappellen, D. Rohner, and M. Susa (2004)
J. Biol. Chem. 279, 37704-37715
   Abstract »    Full Text »    PDF »
Targeted Disruption of hesr2 Results in Atrioventricular Valve Anomalies That Lead to Heart Dysfunction.
H. Kokubo, S. Miyagawa-Tomita, H. Tomimatsu, Y. Nakashima, M. Nakazawa, Y. Saga, and R. L. Johnson (2004)
Circ. Res. 95, 540-547
   Abstract »    Full Text »    PDF »
Jun Blockade of Erythropoiesis: Role for Repression of GATA-1 by HERP2.
K. E. Elagib, M. Xiao, I. M. Hussaini, L. L. Delehanty, L. A. Palmer, F. K. Racke, M. J. Birrer, G. Shanmugasundaram, M. A. McDevitt, and A. N. Goldfarb (2004)
Mol. Cell. Biol. 24, 7779-7794
   Abstract »    Full Text »    PDF »
Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors.
N. Tanimizu and A. Miyajima (2004)
J. Cell Sci. 117, 3165-3174
   Abstract »    Full Text »    PDF »
Helt, a Novel Basic-Helix-Loop-Helix Transcriptional Repressor Expressed in the Developing Central Nervous System.
T. Nakatani, E. Mizuhara, Y. Minaki, Y. Sakamoto, and Y. Ono (2004)
J. Biol. Chem. 279, 16356-16367
   Abstract »    Full Text »    PDF »
Identification of a Novel Basic Helix-Loop-Helix Gene, Heslike, and Its Role in GABAergic Neurogenesis.
G. Miyoshi, Y. Bessho, S. Yamada, and R. Kageyama (2004)
J. Neurosci. 24, 3672-3682
   Abstract »    Full Text »    PDF »
Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells.
F. Itoh, S. Itoh, M.-J. Goumans, G. Valdimarsdottir, T. Iso, G. P. Dotto, Y. Hamamori, L. Kedes, M. Kato, and P. t. Dijke (2004)
EMBO J. 23, 541-551
   Abstract »    Full Text »    PDF »
Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation.
C. Dahlqvist, A. Blokzijl, G. Chapman, A. Falk, K. Dannaeus, C. F. Ibanez, and U. Lendahl (2003)
Development 130, 6089-6099
   Abstract »    Full Text »    PDF »
The Basic Helix-Loop-Helix Genes Hesr1/Hey1 and Hesr2/Hey2 Regulate Maintenance of Neural Precursor Cells in the Brain.
M. Sakamoto, H. Hirata, T. Ohtsuka, Y. Bessho, and R. Kageyama (2003)
J. Biol. Chem. 278, 44808-44815
   Abstract »    Full Text »    PDF »
Association of Transcription Factor YY1 with the High Molecular Weight Notch Complex Suppresses the Transactivation Activity of Notch.
T.-S. Yeh, Y.-M. Lin, R.-H. Hsieh, and M.-J. Tseng (2003)
J. Biol. Chem. 278, 41963-41969
   Abstract »    Full Text »    PDF »
Phosphorylation by Glycogen Synthase Kinase-3{beta} Down-regulates Notch Activity, a Link for Notch and Wnt Pathways.
L. Espinosa, J. Ingles-Esteve, C. Aguilera, and A. Bigas (2003)
J. Biol. Chem. 278, 32227-32235
   Abstract »    Full Text »    PDF »
Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2.
Y. Sakata, C. N. Kamei, H. Nakagami, R. Bronson, J. K. Liao, and M. T. Chin (2002)
PNAS 99, 16197-16202
   Abstract »    Full Text »    PDF »
Identification of a Family of Mastermind-Like Transcriptional Coactivators for Mammalian Notch Receptors.
L. Wu, T. Sun, K. Kobayashi, P. Gao, and J. D. Griffin (2002)
Mol. Cell. Biol. 22, 7688-7700
   Abstract »    Full Text »    PDF »
Identification of candidate lung cancer susceptibility genes in mouse using oligonucleotide arrays.
W J Lemon, H Bernert, H Sun, Y Wang, and M You (2002)
J. Med. Genet. 39, 644-655
   Abstract »    Full Text »    PDF »
The Human Acid alpha -Glucosidase Gene Is a Novel Target of the Notch-1/Hes-1 Signaling Pathway.
B. Yan, N. Raben, and P. Plotz (2002)
J. Biol. Chem. 277, 29760-29764
   Abstract »    Full Text »    PDF »
Coordinate Notch3-Hairy-related Transcription Factor Pathway Regulation in Response to Arterial Injury. MEDIATOR ROLE OF PLATELET-DERIVED GROWTH FACTOR AND ERK.
W. Wang, A. H. Campos, C. Z. Prince, Y. Mou, and M. J. Pollman (2002)
J. Biol. Chem. 277, 23165-23171
   Abstract »    Full Text »    PDF »
Notch3 Signaling in Vascular Smooth Muscle Cells Induces c-FLIP Expression via ERK/MAPK Activation. RESISTANCE TO Fas LIGAND-INDUCED APOPTOSIS.
W. Wang, C. Z. Prince, Y. Mou, and M. J. Pollman (2002)
J. Biol. Chem. 277, 21723-21729
   Abstract »    Full Text »    PDF »
Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1.
V. Sriuranpong, M. W. Borges, C. L. Strock, E. K. Nakakura, D. N. Watkins, C. M. Blaumueller, B. D. Nelkin, and D. W. Ball (2002)
Mol. Cell. Biol. 22, 3129-3139
   Abstract »    Full Text »    PDF »
Hey bHLH Factors in Cardiovascular Development.
A. FISCHER, C. LEIMEISTER, C. WINKLER, N. SCHUMACHER, B. KLAMT, H. ELMASRI, C. STEIDL, M. MAIER, K.-P. KNOBELOCH, K. AMANN, et al. (2002)
Cold Spring Harb Symp Quant Biol 67, 63-70
   Abstract »    PDF »
HERP, a Novel Heterodimer Partner of HES/E(spl) in Notch Signaling.
T. Iso, V. Sartorelli, C. Poizat, S. Iezzi, H.-Y. Wu, G. Chung, L. Kedes, and Y. Hamamori (2001)
Mol. Cell. Biol. 21, 6080-6089
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882