Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 21 (21): 7509-7522

Copyright © 2001 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, November 2001, p. 7509-7522, Vol. 21, No. 21
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.21.7509-7522.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

The HOX Homeodomain Proteins Block CBP Histone Acetyltransferase Activity

Wei-fang Shen,1,* Keerthi Krishnan,1 H. J. Lawrence,1 and Corey Largman1,2

Departments of Medicine1 and Dermatology,2 VA Medical Center and University of California, San Francisco, California

Received 29 May 2001/Returned for modification 22 June 2001/Accepted 20 July 2001

Despite the identification of PBC proteins as cofactors that provide DNA affinity and binding specificity for the HOX homeodomain proteins, HOX proteins do not demonstrate robust activity in transient-transcription assays and few authentic downstream targets have been identified for these putative transcription factors. During a search for additional cofactors, we established that each of the 14 HOX proteins tested, from 11 separate paralog groups, binds to CBP or p300. All six isolated homeodomain fragments tested bind to CBP, suggesting that the homeodomain is a common site of interaction. Surprisingly, CBP-p300 does not form DNA binding complexes with the HOX proteins but instead prevents their binding to DNA. The HOX proteins are not substrates for CBP histone acetyltransferase (HAT) but instead inhibit the activity of CBP in both in vitro and in vivo systems. These mutually inhibitory interactions are reflected by the inability of CBP to potentiate the low levels of gene activation induced by HOX proteins in a range of reporter assays. We propose two models for HOX protein function: (i) HOX proteins may function without CBP HAT to regulate transcription as cooperative DNA binding molecules with PBX, MEIS, or other cofactors, and (ii) the HOX proteins may inhibit CBP HAT activity and thus function as repressors of gene transcription.


* Corresponding author. Mailing address: VA Medical Center, 4150 Clement St., San Francisco, CA 94121. Phone: (415) 221-4810, ext. 3427. Fax: (415) 221-4262. E-mail: wfshen{at}itsa.ucsf.edu.


Molecular and Cellular Biology, November 2001, p. 7509-7522, Vol. 21, No. 21
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.21.7509-7522.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Structural basis for homeodomain recognition by the cell-cycle regulator Geminin.
B. Zhou, C. Liu, Z. Xu, and G. Zhu (2012)
PNAS 109, 8931-8936
   Abstract »    Full Text »    PDF »
HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules.
S. Bandyopadhyay, D. P. Harris, G. N. Adams, G. E. Lause, A. McHugh, E. G. Tillmaand, A. Money, B. Willard, P. L. Fox, and P. E. DiCorleto (2012)
Mol. Cell. Biol. 32, 1202-1213
   Abstract »    Full Text »    PDF »
HOXC8 Inhibits Androgen Receptor Signaling in Human Prostate Cancer Cells by Inhibiting SRC-3 Recruitment to Direct Androgen Target Genes.
S. D. Axlund, J. R. Lambert, and S. K. Nordeen (2010)
Mol. Cancer Res. 8, 1643-1655
   Abstract »    Full Text »    PDF »
Pbx1 Represses Osteoblastogenesis by Blocking Hoxa10-Mediated Recruitment of Chromatin Remodeling Factors.
J. A. R. Gordon, M. Q. Hassan, S. Saini, M. Montecino, A. J. van Wijnen, G. S. Stein, J. L. Stein, and J. B. Lian (2010)
Mol. Cell. Biol. 30, 3531-3541
   Abstract »    Full Text »    PDF »
Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer.
Z. Agoston and D. Schulte (2009)
Development 136, 3311-3322
   Abstract »    Full Text »    PDF »
Transcriptional Activation by MEIS1A in Response to Protein Kinase A Signaling Requires the Transducers of Regulated CREB Family of CREB Co-activators.
S.-L. Goh, Y. Looi, H. Shen, J. Fang, C. Bodner, M. Houle, A. C.-H. Ng, R. A. Screaton, and M. Featherstone (2009)
J. Biol. Chem. 284, 18904-18912
   Abstract »    Full Text »    PDF »
Negative regulation of transcription coactivator p300 by orphan receptor TR3.
G.-d. Li, J.-x. Fang, H.-z. Chen, J. Luo, Z.-h. Zheng, Y.-m. Shen, and Q. Wu (2007)
Nucleic Acids Res. 35, 7348-7359
   Abstract »    Full Text »    PDF »
HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes.
M. Q. Hassan, R. Tare, S. H. Lee, M. Mandeville, B. Weiner, M. Montecino, A. J. van Wijnen, J. L. Stein, G. S. Stein, and J. B. Lian (2007)
Mol. Cell. Biol. 27, 3337-3352
   Abstract »    Full Text »    PDF »
Yin Yang 1 Physically Interacts with Hoxa11 and Represses Hoxa11-dependent Transcription.
M. P.-s. Luke, G. Sui, H. Liu, and Y. Shi (2006)
J. Biol. Chem. 281, 33226-33232
   Abstract »    Full Text »    PDF »
Global transcriptional coactivators CREB-binding protein and p300 are highly essential collectively but not individually in peripheral B cells.
W. Xu, T. Fukuyama, P. A. Ney, D. Wang, J. Rehg, K. Boyd, J. M. A. van Deursen, and P. K. Brindle (2006)
Blood 107, 4407-4416
   Abstract »    Full Text »    PDF »
Conditional Knockout Mice Reveal Distinct Functions for the Global Transcriptional Coactivators CBP and p300 in T-Cell Development.
L. H. Kasper, T. Fukuyama, M. A. Biesen, F. Boussouar, C. Tong, A. de Pauw, P. J. Murray, J. M. A. van Deursen, and P. K. Brindle (2006)
Mol. Cell. Biol. 26, 789-809
   Abstract »    Full Text »    PDF »
A genomic approach to the identification and characterization of HOXA13 functional binding elements.
C. D. McCabe and J. W. Innis (2005)
Nucleic Acids Res. 33, 6782-6794
   Abstract »    Full Text »    PDF »
Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.
T. M. Williams, M. E. Williams, J. H. Heaton, T. D. Gelehrter, and J. W. Innis (2005)
Nucleic Acids Res. 33, 4475-4484
   Abstract »    Full Text »    PDF »
HOXB13 Induces Growth Suppression of Prostate Cancer Cells as a Repressor of Hormone-Activated Androgen Receptor Signaling.
C. Jung, R.-S. Kim, H.-J. Zhang, S.-J. Lee, and M.-H. Jeng (2004)
Cancer Res. 64, 9185-9192
   Abstract »    Full Text »    PDF »
CREB Binding Protein Functions During Successive Stages of Eye Development in Drosophila.
J. P. Kumar, T. Jamal, A. Doetsch, F. R. Turner, and J. B. Duffy (2004)
Genetics 168, 877-893
   Abstract »    Full Text »    PDF »
HOXB6 Protein Is Bound to CREB-binding Protein and Represses Globin Expression in a DNA Binding-dependent, PBX Interaction-independent Process.
W. Shen, D. Chrobak, K. Krishnan, H. J. Lawrence, and C. Largman (2004)
J. Biol. Chem. 279, 39895-39904
   Abstract »    Full Text »    PDF »
Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells.
A. C. M. Brun, J. M. Bjornsson, M. Magnusson, N. Larsson, P. Leveen, M. Ehinger, E. Nilsson, and S. Karlsson (2004)
Blood 103, 4126-4133
   Abstract »    Full Text »    PDF »
HOXB13 Homeodomain Protein Suppresses the Growth of Prostate Cancer Cells by the Negative Regulation of T-Cell Factor 4.
C. Jung, R.-S. Kim, S.-J. Lee, C. Wang, and M.-H. Jeng (2004)
Cancer Res. 64, 3046-3051
   Abstract »    Full Text »    PDF »
The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.
X.-J. Yang (2004)
Nucleic Acids Res. 32, 959-976
   Abstract »    Full Text »    PDF »
Regulating histone acetyltransferases and deacetylases.
G. Legube and D. Trouche (2003)
EMBO Rep. 4, 944-947
   Abstract »    Full Text »    PDF »
Aberrant HOXC Expression Accompanies the Malignant Phenotype in Human Prostate.
G. J. Miller, H. L. Miller, A. van Bokhoven, J. R. Lambert, P. N. Werahera, O. Schirripa, M. S. Lucia, and S. K. Nordeen (2003)
Cancer Res. 63, 5879-5888
   Abstract »    Full Text »    PDF »
Hox Proteins Functionally Cooperate with the GC Box-binding Protein System through Distinct Domains.
M. Suzuki, N. Ueno, and A. Kuroiwa (2003)
J. Biol. Chem. 278, 30148-30156
   Abstract »    Full Text »    PDF »
Specific homeodomain-DNA interactions are required for HOX11-mediated transformation.
B. M. Owens, Y.-X. Zhu, T.-C. Suen, P.-X. Wang, J. F. Greenblatt, P. E. Goss, and R. G. Hawley (2003)
Blood 101, 4966-4974
   Abstract »    Full Text »    PDF »
Inhibition of p300/CBP by Early B-Cell Factor.
F. Zhao, R. McCarrick-Walmsley, P. Akerblad, M. Sigvardsson, and T. Kadesch (2003)
Mol. Cell. Biol. 23, 3837-3846
   Abstract »    Full Text »    PDF »
Reduced Proliferative Capacity of Hematopoietic Stem Cells Deficient in Hoxb3 and Hoxb4.
J. M. Bjornsson, N. Larsson, A. C. M. Brun, M. Magnusson, E. Andersson, P. Lundstrom, J. Larsson, E. Repetowska, M. Ehinger, R. K. Humphries, et al. (2003)
Mol. Cell. Biol. 23, 3872-3883
   Abstract »    Full Text »    PDF »
Multiple Mechanisms for Pitx-1 Transactivation of a Luteinizing Hormone beta Subunit Gene.
P. Melamed, M. Koh, P. Preklathan, L. Bei, and C. Hew (2002)
J. Biol. Chem. 277, 26200-26207
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882