Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 21 (24): 8533-8546

Copyright © 2001 by the American Society for Microbiology. All rights reserved.

Molecular and Cellular Biology, December 2001, p. 8533-8546, Vol. 21, No. 24
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.24.8533-8546.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

Identification of p53 Sequence Elements That Are Required for MDM2-Mediated Nuclear Export

Jijie Gu, Linghu Nie, Dmitri Wiederschain, and Zhi-Min Yuan*

Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115

Received 1 June 2001/Returned for modification 9 August 2001/Accepted 27 September 2001

It has been demonstrated that MDM2 can differentially regulate subcellular distribution of p53 and its close structural homologue p73. In contrast to MDM2-mediated p53 nuclear export, p73 accumulates in the nucleus as aggregates that colocalize with MDM2. Distinct distribution patterns of p53 and p73 suggest the existence of unique structural elements in the two homologues that determine their MDM2-mediated relocalization in the cell. Using a series of p53/p73 chimeric proteins, we demonstrate that three regions of p53 are involved in the regulation of MDM2-mediated nuclear export. The DNA binding domain (DBD) is involved in the maintenance of a proper conformation that is required for functional activity of the nuclear export sequence (NES) of p53. The extreme C terminus of p53 harbors several lysine residues whose ubiquitination by MDM2 appears to be the initial event in p53 nuclear export, as evidenced by the impaired nucleocytoplasmic shuttling of p53 mutants bearing simultaneous substitutions of lysines 370, 372, 373, 381, 382, and 386 to arginines (6KR) or alanines (6KA). Finally, the region between the DBD and the oligomerization domain of p53, specifically lysine 305, also plays a critical role in fully revealing p53NES. We conclude that MDM2-mediated nuclear export of p53 depends on a series of ubiquitination-induced conformational changes in the p53 molecule that lead to the activation of p53NES. In addition, we demonstrate that the p53NES may be activated without necessarily disrupting the p53 tetramer.

* Corresponding author. Mailing address: Department of Cancer Cell Biology (Bldg. 1, Room 209), Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115. Phone: (617) 432-0763. Fax: (617) 432-0107. E-mail: zyuan{at}

Molecular and Cellular Biology, December 2001, p. 8533-8546, Vol. 21, No. 24
0270-7306/01/$04.00+0   DOI: 10.1128/MCB.21.24.8533-8546.2001
Copyright © 2001, American Society for Microbiology. All rights reserved.

E3 Ligases Determine Ubiquitination Site and Conjugate Type by Enforcing Specificity on E2 Enzymes.
Y. David, N. Ternette, M. J. Edelmann, T. Ziv, B. Gayer, R. Sertchook, Y. Dadon, B. M. Kessler, and A. Navon (2011)
J. Biol. Chem. 286, 44104-44115
   Abstract »    Full Text »    PDF »
The Cancer-associated K351N Mutation Affects the Ubiquitination and the Translocation to Mitochondria of p53 Protein.
M. Muscolini, E. Montagni, V. Palermo, S. Di Agostino, W. Gu, S. Abdelmoula-Souissi, C. Mazzoni, G. Blandino, and L. Tuosto (2011)
J. Biol. Chem. 286, 39693-39702
   Abstract »    Full Text »    PDF »
ZNF668 Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer.
R. Hu, G. Peng, H. Dai, E.-K. Breuer, K. Stemke-Hale, K. Li, A. M. Gonzalez-Angulo, G. B. Mills, and S.-Y. Lin (2011)
Cancer Res. 71, 6524-6534
   Abstract »    Full Text »    PDF »
MSL2 Promotes Mdm2-independent Cytoplasmic Localization of p53.
J.-P. Kruse and W. Gu (2009)
J. Biol. Chem. 284, 3250-3263
   Abstract »    Full Text »    PDF »
Regulation of p53 tetramerization and nuclear export by ARC.
R. S.-Y. Foo, Y.-J. Nam, M. J. Ostreicher, M. D. Metzl, R. S. Whelan, C.-F. Peng, A. W. Ashton, W. Fu, K. Mani, S.-F. Chin, et al. (2007)
PNAS 104, 20826-20831
   Abstract »    Full Text »    PDF »
Ubiquitination and Degradation of Mutant p53.
N. Lukashchuk and K. H. Vousden (2007)
Mol. Cell. Biol. 27, 8284-8295
   Abstract »    Full Text »    PDF »
Regulation of p53 Nuclear Export through Sequential Changes in Conformation and Ubiquitination.
L. Nie, M. Sasaki, and C. G. Maki (2007)
J. Biol. Chem. 282, 14616-14625
   Abstract »    Full Text »    PDF »
Platelet-Derived Growth Factor BB Induces Nuclear Export and Proteasomal Degradation of CREB via Phosphatidylinositol 3-Kinase/Akt Signaling in Pulmonary Artery Smooth Muscle Cells.
C. V. Garat, D. Fankell, P. F. Erickson, J. E.-B. Reusch, N. N. Bauer, I. F. McMurtry, and D. J. Klemm (2006)
Mol. Cell. Biol. 26, 4934-4948
   Abstract »    Full Text »    PDF »
Mechanisms for human cytomegalovirus-induced cytoplasmic p53 sequestration in endothelial cells.
B. Utama, Y. H. Shen, B. M. Mitchell, I. T. Makagiansar, Y. Gan, R. Muthuswamy, S. Duraisamy, D. Martin, X. Wang, M.-X. Zhang, et al. (2006)
J. Cell Sci. 119, 2457-2467
   Abstract »    Full Text »    PDF »
Inhibition of the ATM/p53 Signal Transduction Pathway by Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor 1.
Y. C. Shin, H. Nakamura, X. Liang, P. Feng, H. Chang, T. F. Kowalik, and J. U. Jung (2006)
J. Virol. 80, 2257-2266
   Abstract »    Full Text »    PDF »
Ubiquitination of p53 at Multiple Sites in the DNA-Binding Domain.
W. M. Chan, M. C. Mak, T. K. Fung, A. Lau, W. Y. Siu, and R. Y.C. Poon (2006)
Mol. Cancer Res. 4, 15-25
   Abstract »    Full Text »    PDF »
A Serine/Threonine-rich Motif Is One of Three Nuclear Localization Signals That Determine Unidirectional Transport of the Mineralocorticoid Receptor to the Nucleus.
R. F. Walther, E. Atlas, A. Carrigan, Y. Rouleau, A. Edgecombe, L. Visentin, C. Lamprecht, G. C. Addicks, R. J. G. Hache, and Y. A. Lefebvre (2005)
J. Biol. Chem. 280, 17549-17561
   Abstract »    Full Text »    PDF »
p53 Targets Simian Virus 40 Large T Antigen for Acetylation by CBP.
D. L. Poulin, A. L. Kung, and J. A. DeCaprio (2004)
J. Virol. 78, 8245-8253
   Abstract »    Full Text »    PDF »
Identification of a Nuclear Export Signal and Protein Interaction Domains in Deformed Epidermal Autoregulatory Factor-1 (DEAF-1).
P. J. Jensik, J. I. Huggenvik, and M. W. Collard (2004)
J. Biol. Chem. 279, 32692-32699
   Abstract »    Full Text »    PDF »
Control of Human PIRH2 Protein Stability: INVOLVEMENT OF TIP60 AND THE PROTEASOME.
I. R. Logan, V. Sapountzi, L. Gaughan, D. E. Neal, and C. N. Robson (2004)
J. Biol. Chem. 279, 11696-11704
   Abstract »    Full Text »    PDF »
hGTSE-1 Expression Stimulates Cytoplasmic Localization of p53.
M. Monte, R. Benetti, L. Collavin, L. Marchionni, G. Del Sal, and C. Schneider (2004)
J. Biol. Chem. 279, 11744-11752
   Abstract »    Full Text »    PDF »
Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo.
J. Luo, M. Li, Y. Tang, M. Laszkowska, R. G. Roeder, and W. Gu (2004)
PNAS 101, 2259-2264
   Abstract »    Full Text »    PDF »
ERF Nuclear Shuttling, a Continuous Monitor of Erk Activity That Links It to Cell Cycle Progression.
L. Le Gallic, L. Virgilio, P. Cohen, B. Biteau, and G. Mavrothalassitis (2004)
Mol. Cell. Biol. 24, 1206-1218
   Abstract »    Full Text »    PDF »
p53 Activation in Chronic Radiation-Treated Breast Cancer Cells: Regulation of MDM2/p14ARF.
L. Xia, A. Paik, and J. J. Li (2004)
Cancer Res. 64, 221-228
   Abstract »    Full Text »    PDF »
Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2.
M. Li, C. L. Brooks, F. Wu-Baer, D. Chen, R. Baer, and W. Gu (2003)
Science 302, 1972-1975
   Abstract »    Full Text »    PDF »
Critical Role for a Central Part of Mdm2 in the Ubiquitylation of p53.
E. Meulmeester, R. Frenk, R. Stad, P. de Graaf, J.-C. Marine, K. H. Vousden, and A. G. Jochemsen (2003)
Mol. Cell. Biol. 23, 4929-4938
   Abstract »    Full Text »    PDF »
Critical Contribution of the MDM2 Acidic Domain to p53 Ubiquitination.
H. Kawai, D. Wiederschain, and Z.-M. Yuan (2003)
Mol. Cell. Biol. 23, 4939-4947
   Abstract »    Full Text »    PDF »
Molecular Basis of p53 Functional Inactivation by the Leukemic Protein MLL-ELL.
D. Wiederschain, H. Kawai, J. Gu, A. Shilatifard, and Z.-M. Yuan (2003)
Mol. Cell. Biol. 23, 4230-4246
   Abstract »    Full Text »    PDF »
c-Abl Stabilizes p73 by a Phosphorylation-augmented Interaction.
K. K. C. Tsai and Z.-M. Yuan (2003)
Cancer Res. 63, 3418-3424
   Abstract »    Full Text »    PDF »
Characterization of a Nuclear Export Signal within the Human T Cell Leukemia Virus Type I Transactivator Protein Tax.
T. Alefantis, K. Barmak, E. W. Harhaj, C. Grant, and B. Wigdahl (2003)
J. Biol. Chem. 278, 21814-21822
   Abstract »    Full Text »    PDF »
Death Inducer-Obliterator 1 Triggers Apoptosis after Nuclear Translocation and Caspase Upregulation.
D. Garcia-Domingo, D. Ramirez, G. Gonzalez de Buitrago, and C. Martinez-A (2003)
Mol. Cell. Biol. 23, 3216-3225
   Abstract »    Full Text »    PDF »
Stabilization of p53 by CP-31398 Inhibits Ubiquitination without Altering Phosphorylation at Serine 15 or 20 or MDM2 Binding.
W. Wang, R. Takimoto, F. Rastinejad, and W. S. El-Deiry (2003)
Mol. Cell. Biol. 23, 2171-2181
   Abstract »    Full Text »    PDF »
Acetylation of p53 Inhibits Its Ubiquitination by Mdm2.
M. Li, J. Luo, C. L. Brooks, and W. Gu (2002)
J. Biol. Chem. 277, 50607-50611
   Abstract »    Full Text »    PDF »
Mutual Dependence of MDM2 and MDMX in Their Functional Inactivation of p53.
J. Gu, H. Kawai, L. Nie, H. Kitao, D. Wiederschain, A. G. Jochemsen, J. Parant, G. Lozano, and Z.-M. Yuan (2002)
J. Biol. Chem. 277, 19251-19254
   Abstract »    Full Text »    PDF »
C-Terminal Ubiquitination of p53 Contributes to Nuclear Export.
M. A. E. Lohrum, D. B. Woods, R. L. Ludwig, E. Balint, and K. H. Vousden (2001)
Mol. Cell. Biol. 21, 8521-8532
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882