Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 22 (9): 3129-3139

Copyright © 2002 by the American Society for Microbiology. All rights reserved.

Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1

Virote Sriuranpong,1,2 Michael W. Borges,2 Christopher L. Strock,2 Eric K. Nakakura,2,3 D. Neil Watkins,2 Christine M. Blaumueller,4 Barry D. Nelkin,2 and Douglas W. Ball2,5*

Program in Cellular and Molecular Medicine,1 Oncology Center,2 Department of Medicine,5 Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231,3 European Molecular Biology Organization, Heidelberg, Germany4

Received for publication 16 February 2001. Revision received 17 November 2001. Accepted for publication 12 December 2001.

Abstract: In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer.


* Corresponding author. Mailing address: Johns Hopkins Oncology Center, 1650 Orleans St., Room 553, Baltimore, MD 21231. Phone: (410) 955-8506. Fax: (410) 614-9884. E-mail: dball{at}jhu.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway.
A. Demelash, P. Rudrabhatla, H. C. Pant, X. Wang, N. D. Amin, C. D. McWhite, X. Naizhen, and R. I. Linnoila (2012)
Mol. Biol. Cell 23, 2856-2866
   Abstract »    Full Text »    PDF »
Notch Signaling Contributes to Lung Cancer Clonogenic Capacity In Vitro but May Be Circumvented in Tumorigenesis In Vivo.
J. Osanyingbemi-Obidi, I. Dobromilskaya, P. B. Illei, C. L. Hann, and C. M. Rudin (2011)
Mol. Cancer Res. 9, 1746-1754
   Abstract »    Full Text »    PDF »
Achaete-Scute Complex Homologue 1 Regulates Tumor-Initiating Capacity in Human Small Cell Lung Cancer.
T. Jiang, B. J. Collins, N. Jin, D. N. Watkins, M. V. Brock, W. Matsui, B. D. Nelkin, and D. W. Ball (2009)
Cancer Res. 69, 845-854
   Abstract »    Full Text »    PDF »
Negative-feedback regulation of proneural proteins controls the timing of neural precursor division.
P.-J. Chang, Y.-L. Hsiao, A.-C. Tien, Y.-C. Li, and H. Pi (2008)
Development 135, 3021-3030
   Abstract »    Full Text »    PDF »
The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response.
A. Mandinova, K. Lefort, A. T. di Vignano, W. Stonely, P. Ostano, G. Chiorino, H. Iwaki, J. Nakanishi, and G. P. Dotto (2008)
EMBO J. 27, 1243-1254
   Abstract »    Full Text »    PDF »
Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer.
A. M. Saaf, J. M. Halbleib, X. Chen, S. T. Yuen, S. Y. Leung, W. J. Nelson, and P. O. Brown (2007)
Mol. Biol. Cell 18, 4245-4260
   Abstract »    Full Text »    PDF »
Valproic Acid Activates Notch-1 Signaling and Regulates the Neuroendocrine Phenotype in Carcinoid Cancer Cells.
D. Y. Greenblatt, A. M. Vaccaro, R. Jaskula-Sztul, L. Ning, M. Haymart, M. Kunnimalaiyaan, and H. Chen (2007)
Oncologist 12, 942-951
   Abstract »    Full Text »    PDF »
Delta Notch and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors.
A. Fischer and M. Gessler (2007)
Nucleic Acids Res. 35, 4583-4596
   Abstract »    Full Text »    PDF »
Tumor Suppressor Role of Notch-1 Signaling in Neuroendocrine Tumors.
M. Kunnimalaiyaan and H. Chen (2007)
Oncologist 12, 535-542
   Abstract »    Full Text »    PDF »
Overexpression of the NOTCH1 Intracellular Domain Inhibits Cell Proliferation and Alters the Neuroendocrine Phenotype of Medullary Thyroid Cancer Cells.
M. Kunnimalaiyaan, A. M. Vaccaro, M. A. Ndiaye, and H. Chen (2006)
J. Biol. Chem. 281, 39819-39830
   Abstract »    Full Text »    PDF »
An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation.
S.-Z. Wang, J. Dulin, H. Wu, E. Hurlock, S.-E. Lee, K. Jansson, and Q. R. Lu (2006)
Development 133, 3389-3398
   Abstract »    Full Text »    PDF »
Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons.
A. E. Vernon, M. Movassagh, I. Horan, H. Wise, S. Ohnuma, and A. Philpott (2006)
EMBO Rep. 7, 643-648
   Abstract »    Full Text »    PDF »
p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex.
L. Nguyen, A. Besson, J. I.-T. Heng, C. Schuurmans, L. Teboul, C. Parras, A. Philpott, J. M. Roberts, and F. Guillemot (2006)
Genes & Dev. 20, 1511-1524
   Abstract »    Full Text »    PDF »
Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation.
B.-C. Nguyen, K. Lefort, A. Mandinova, D. Antonini, V. Devgan, G. Della Gatta, M. I. Koster, Z. Zhang, J. Wang, A. T. di Vignano, et al. (2006)
Genes & Dev. 20, 1028-1042
   Abstract »    Full Text »    PDF »
Conservation of the Notch1 signaling pathway in gastrointestinal carcinoid cells.
M. Kunnimalaiyaan, K. Traeger, and H. Chen (2005)
Am J Physiol Gastrointest Liver Physiol 289, G636-G642
   Abstract »    Full Text »    PDF »
Mouse models for human lung cancer.
R. Meuwissen and A. Berns (2005)
Genes & Dev. 19, 643-664
   Abstract »    Full Text »    PDF »
Aberrant Expression of Human Achaete-Scute Homologue Gene 1 in the Gastrointestinal Neuroendocrine Carcinomas.
T. Shida, M. Furuya, T. Nikaido, T. Kishimoto, K. Koda, K. Oda, Y. Nakatani, M. Miyazaki, and H. Ishikura (2005)
Clin. Cancer Res. 11, 450-458
   Abstract »    Full Text »    PDF »
Multipotent Retinal Progenitors Express Developmental Markers, Differentiate into Retinal Neurons, and Preserve Light-Mediated Behavior.
H. J. Klassen, T. F. Ng, Y. Kurimoto, I. Kirov, M. Shatos, P. Coffey, and M. J. Young (2004)
Invest. Ophthalmol. Vis. Sci. 45, 4167-4173
   Abstract »    Full Text »    PDF »
Growth Factor Independence-1 Is Expressed in Primary Human Neuroendocrine Lung Carcinomas and Mediates the Differentiation of Murine Pulmonary Neuroendocrine Cells.
A. Kazanjian, D. Wallis, N. Au, R. Nigam, K. J. T. Venken, P. T. Cagle, B. F. Dickey, H. J. Bellen, C. B. Gilks, and H. L. Grimes (2004)
Cancer Res. 64, 6874-6882
   Abstract »    Full Text »    PDF »
BMP-2 decreases Mash1 stability by increasing Id1 expression.
F. Vinals, J. Reiriz, S. Ambrosio, R. Bartrons, J. L. Rosa, and F. Ventura (2004)
EMBO J. 23, 3527-3537
   Abstract »    Full Text »    PDF »
Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans.
X. Karp and I. Greenwald (2003)
Genes & Dev. 17, 3100-3111
   Abstract »    Full Text »    PDF »
Glutamate Receptor Subunit 3 Is Modified by Site-specific Limited Proteolysis Including Cleavage by {gamma}-Secretase.
E. L. Meyer, N. Strutz, L. C. Gahring, and S. W. Rogers (2003)
J. Biol. Chem. 278, 23786-23796
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882