Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PLANT CELL 12 (11): 2191-2200

Copyright © 2000 by the American Society of Plant Physiologists.

Plant Cell, Vol. 12, 2191-2200, November 2000, Copyright © 2000, American Society of Plant Physiologists Oxalic Acid, a Pathogenicity Factor for Sclerotinia sclerotiorum, Suppresses the Oxidative Burst of the Host Plant Stephen G. Cessnaa, Valerie E. Searsa, Martin B. Dickmanb, and Philip S. Lowa a Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, Indiana 47904-1393 b Department of Plant Pathology, University of Nebraska, 406G Plant Science Hall, Lincoln, Nebraska 68583-0722 Philip S. Low, plow{at} (E-mail), 765-494-0239 (fax)

Effective pathogenesis by the fungus Sclerotinia sclerotiorum requires the secretion of oxalic acid. Studies were conducted to determine whether oxalate aids pathogen compatibility by modulating the oxidative burst of the host plant. Inoculation of tobacco leaves with an oxalate-deficient nonpathogenic mutant of S. sclerotiorum induced measurable oxidant biosynthesis, but inoculation with an oxalate-secreting strain did not. Oxalate inhibited production of H2O2 in tobacco and soybean cultured cell lines with a median inhibitory concentration of ~4 to 5 mM, a concentration less than that measured in preparations of the virulent fungus. Several observations also indicate that the inhibitory effects of oxalate are largely independent of both its acidity and its affinity for Ca2+. These and other data demonstrate that oxalate may inhibit a signaling step positioned upstream of oxidase assembly/activation but downstream of Ca2+ fluxes into the plant cell cytosol.

Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).
Y. Sun, C. Wang, B. Yang, F. Wu, X. Hao, W. Liang, F. Niu, J. Yan, H. Zhang, B. Wang, et al. (2014)
J. Exp. Bot. 65, 2171-2188
   Abstract »    Full Text »    PDF »
Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum.
J. Zhou, A. Sun, and D. Xing (2013)
J. Exp. Bot. 64, 3261-3272
   Abstract »    Full Text »    PDF »
Identification and Characterization of Sclerotinia sclerotiorum NADPH Oxidases.
H.-j. Kim, C. Chen, M. Kabbage, and M. B. Dickman (2011)
Appl. Envir. Microbiol. 77, 7721-7729
   Abstract »    Full Text »    PDF »
Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice.
L. Yu, J. Jiang, C. Zhang, L. Jiang, N. Ye, Y. Lu, G. Yang, E. Liu, C. Peng, Z. He, et al. (2010)
J. Exp. Bot. 61, 1625-1634
   Abstract »    Full Text »    PDF »
Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid.
R. Errakhi, P. Meimoun, A. Lehner, G. Vidal, J. Briand, F. Corbineau, J.-P. Rona, and F. Bouteau (2008)
J. Exp. Bot. 59, 3121-3129
   Abstract »    Full Text »    PDF »
Genome-Wide Screen for Oxalate-Sensitive Mutants of Saccharomyces cerevisiae.
V. Cheng, H. U. Stotz, K. Hippchen, and A. T. Bakalinsky (2007)
Appl. Envir. Microbiol. 73, 5919-5927
   Abstract »    Full Text »    PDF »
Parallels in Fungal Pathogenesis on Plant and Animal Hosts.
A. C. Sexton and B. J. Howlett (2006)
Eukaryot. Cell 5, 1941-1949
   Full Text »    PDF »
Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves.
H.-W. Xu, X.-M. Ji, Z.-H. He, W.-P. Shi, G.-H. Zhu, J.-K. Niu, B.-S. Li, and X.-X. Peng (2006)
J. Exp. Bot. 57, 1899-1908
   Abstract »    Full Text »    PDF »
Enhancing Resistance to Sclerotinia minor in Peanut by Expressing a Barley Oxalate Oxidase Gene.
D. M. Livingstone, J. L. Hampton, P. M. Phipps, and E. A. Grabau (2005)
Plant Physiology 137, 1354-1362
   Abstract »    Full Text »    PDF »
Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica.
M. Fomina, S. Hillier, J. M. Charnock, K. Melville, I. J. Alexander, and G. M. Gadd (2005)
Appl. Envir. Microbiol. 71, 371-381
   Abstract »    Full Text »    PDF »
Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection.
R. L. Guimaraes and H. U. Stotz (2004)
Plant Physiology 136, 3703-3711
   Abstract »    Full Text »    PDF »
Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease.
D. Taler, M. Galperin, I. Benjamin, Y. Cohen, and D. Kenigsbuch (2004)
PLANT CELL 16, 172-184
   Abstract »    Full Text »    PDF »
Overexpression of a Gene Encoding Hydrogen Peroxide-Generating Oxalate Oxidase Evokes Defense Responses in Sunflower.
X. Hu, D. L. Bidney, N. Yalpani, J. P. Duvick, O. Crasta, O. Folkerts, and G. Lu (2003)
Plant Physiology 133, 170-181
   Abstract »    Full Text »    PDF »
PLANT SCIENCES: Enhanced: Super Sunflowers--Stopping the Rot?.
J. Heritage (2003)
Science 300, 1243-1244
   Abstract »    Full Text »    PDF »
Oxalate Decarboxylase Requires Manganese and Dioxygen for Activity. OVEREXPRESSION AND CHARACTERIZATION OF BACILLUS SUBTILIS YvrK AND YoaN.
A. Tanner, L. Bowater, S. A. Fairhurst, and S. Bornemann (2001)
J. Biol. Chem. 276, 43627-43634
   Abstract »    Full Text »    PDF »
pH Signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 Homolog.
J. A. Rollins and M. B. Dickman (2001)
Appl. Envir. Microbiol. 67, 75-81
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882