Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 12 (4): 479-492

Copyright © 2000 by the American Society of Plant Physiologists.

Plant Cell, Vol. 12, 479-492, April 2000, Copyright © 2000, American Society of Plant Physiologists Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis Christine Queitscha, Suk-Whan Hongb, Elizabeth Vierlingb, and Susan Lindquista a Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60615-1463 b Department of Biochemistry, University of Arizona, Tucson, Arizona 85721-0106 Susan Lindquist, S-Lindquist{at}uchicago.edu (E-mail), 773-302-7254 (fax)

Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either antisense inhibition or cosuppression, grew at normal rates but had a severely diminished capacity to acquire heat tolerance after mild conditioning pretreatments. The naturally high tolerance of germinating seeds, which express HSP101 as a result of developmental regulation, was also profoundly decreased. Conversely, plants constitutively expressing HSP101 tolerated sudden shifts to extreme temperatures better than did vector controls. We conclude that HSP101 plays a pivotal role in heat tolerance in Arabidopsis. Given the high evolutionary conservation of this protein and the fact that altering HSP101 expression had no detrimental effects on normal growth or development, one should be able to manipulate the stress tolerance of other plants by altering the expression of this protein.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties.
M.-y. Lin, K.-h. Chai, S.-s. Ko, L.-y. Kuang, H.-S. Lur, and Y.-y. Charng (2014)
Plant Physiology 164, 2045-2053
   Abstract »    Full Text »    PDF »
Conserved Distal Loop Residues in the Hsp104 and ClpB Middle Domain Contact Nucleotide-binding Domain 2 and Enable Hsp70-dependent Protein Disaggregation.
M. E. DeSantis, E. A. Sweeny, D. Snead, E. H. Leung, M. S. Go, K. Gupta, P. Wendler, and J. Shorter (2014)
J. Biol. Chem. 289, 848-867
   Abstract »    Full Text »    PDF »
Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg.
P. Carbonell-Bejerano, E. Santa Maria, R. Torres-Perez, C. Royo, D. Lijavetzky, G. Bravo, J. Aguirreolea, M. Sanchez-Diaz, M. C. Antolin, and J. M. Martinez-Zapater (2013)
Plant Cell Physiol. 54, 1200-1216
   Abstract »    Full Text »    PDF »
Alarmins in tendinopathy: unravelling new mechanisms in a common disease.
N. L. Millar, G. A. C. Murrell, and I. B. McInnes (2013)
Rheumatology 52, 769-779
   Abstract »    Full Text »    PDF »
HsfA1d, a Protein Identified via FOX Hunting Using Thellungiella salsuginea cDNAs Improves Heat Tolerance by Regulating Heat-Stress-Responsive Gene Expression.
Y. Higashi, N. Ohama, T. Ishikawa, T. Katori, A. Shimura, K. Kusakabe, K. Yamaguchi-Shinozaki, J. Ishida, M. Tanaka, M. Seki, et al. (2013)
Mol Plant 6, 411-422
   Abstract »    Full Text »    PDF »
Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function.
H. B. Chae, J. C. Moon, M. R. Shin, Y. H. Chi, Y. J. Jung, S. Y. Lee, G. M. Nawkar, H. S. Jung, J. K. Hyun, W. Y. Kim, et al. (2013)
Mol Plant 6, 323-336
   Abstract »    Full Text »    PDF »
A Dominant Major Locus in Chromosome 9 of Rice (Oryza sativa L.) Confers Tolerance to 48 {degrees}C High Temperature at Seedling Stage.
H. Wei, J. Liu, Y. Wang, N. Huang, X. Zhang, L. Wang, J. Zhang, J. Tu, and X. Zhong (2013)
J. Hered. 104, 287-294
   Abstract »    Full Text »    PDF »
Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
A. K. Zupanska, F. C. Denison, R. J. Ferl, and A.-L. Paul (2013)
Am. J. Botany 100, 235-248
   Abstract »    Full Text »    PDF »
Metazoan Hsp70 machines use Hsp110 to power protein disaggregation.
H. Rampelt, J. Kirstein-Miles, N. B. Nillegoda, K. Chi, S. R. Scholz, R. I. Morimoto, and B. Bukau (2012)
EMBO J. 31, 4221-4235
   Abstract »    Full Text »    PDF »
Plasma Membrane Cyclic Nucleotide Gated Calcium Channels Control Land Plant Thermal Sensing and Acquired Thermotolerance.
A. Finka, A. F. H. Cuendet, F. J. M. Maathuis, Y. Saidi, and P. Goloubinoff (2012)
PLANT CELL 24, 3333-3348
   Abstract »    Full Text »    PDF »
Mutations in an Arabidopsis Mitochondrial Transcription Termination Factor-Related Protein Enhance Thermotolerance in the Absence of the Major Molecular Chaperone HSP101.
M. Kim, U. Lee, I. Small, C. C. des Francs-Small, and E. Vierling (2012)
PLANT CELL 24, 3349-3365
   Abstract »    Full Text »    PDF »
Heat Reduces Nitric Oxide Production Required for Auxin-Mediated Gene Expression and Fate Determination in Tree Tobacco Guard Cell Protoplasts.
R. A. Beard, D. J. Anderson, J. L. Bufford, and G. Tallman (2012)
Plant Physiology 159, 1608-1623
   Abstract »    Full Text »    PDF »
Structural basis for intersubunit signaling in a protein disaggregating machine.
A. B. Biter, S. Lee, N. Sung, and F. T. F. Tsai (2012)
PNAS 109, 12515-12520
   Abstract »    Full Text »    PDF »
Recent Gene Duplication and Subfunctionalization Produced a Mitochondrial GrpE, the Nucleotide Exchange Factor of the Hsp70 Complex, Specialized in Thermotolerance to Chronic Heat Stress in Arabidopsis.
C. Hu, S.-y. Lin, W.-t. Chi, and Y.-y. Charng (2012)
Plant Physiology 158, 747-758
   Abstract »    Full Text »    PDF »
Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs But Positively Regulate the Acquired Thermotolerance.
M. Ikeda, N. Mitsuda, and M. Ohme-Takagi (2011)
Plant Physiology 157, 1243-1254
   Abstract »    Full Text »    PDF »
Quantitative Shotgun Proteomics Using a Uniform 15N-Labeled Standard to Monitor Proteome Dynamics in Time Course Experiments Reveals New Insights into the Heat Stress Response of Chlamydomonas reinhardtii.
T. Muhlhaus, J. Weiss, D. Hemme, F. Sommer, and M. Schroda (2011)
Mol. Cell. Proteomics 10, M110.004739
   Abstract »    Full Text »    PDF »
Proteomics Analysis Reveals Post-Translational Mechanisms for Cold-Induced Metabolic Changes in Arabidopsis.
T. Li, S.-L. Xu, J. A. Oses-Prieto, S. Putil, P. Xu, R.-J. Wang, K. H. Li, D. A. Maltby, L.-H. An, A. L. Burlingame, et al. (2011)
Mol Plant 4, 361-374
   Abstract »    Full Text »    PDF »
Cytosol-Localized Heat Shock Factor-Binding Protein, AtHSBP, Functions as a Negative Regulator of Heat Shock Response by Translocation to the Nucleus and Is Required for Seed Development in Arabidopsis.
S.-F. Hsu, H.-C. Lai, and T.-L. Jinn (2010)
Plant Physiology 153, 773-784
   Abstract »    Full Text »    PDF »
The Heat-Inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis.
V. Banti, F. Mafessoni, E. Loreti, A. Alpi, and P. Perata (2010)
Plant Physiology 152, 1471-1483
   Abstract »    Full Text »    PDF »
Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy.
S. F. Gilbert, E. McDonald, N. Boyle, N. Buttino, L. Gyi, M. Mai, N. Prakash, and J. Robinson (2010)
Phil Trans R Soc B 365, 671-678
   Abstract »    Full Text »    PDF »
Expression of Pyrococcus furiosus Superoxide Reductase in Arabidopsis Enhances Heat Tolerance.
Y. J. Im, M. Ji, A. Lee, R. Killens, A. M. Grunden, and W. F. Boss (2009)
Plant Physiology 151, 893-904
   Abstract »    Full Text »    PDF »
Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response.
G. Frank, E. Pressman, R. Ophir, L. Althan, R. Shaked, M. Freedman, S. Shen, and N. Firon (2009)
J. Exp. Bot. 60, 3891-3908
   Abstract »    Full Text »    PDF »
BOBBER1 Is a Noncanonical Arabidopsis Small Heat Shock Protein Required for Both Development and Thermotolerance.
D. E. Perez, J. S. Hoyer, A. I. Johnson, Z. R. Moody, J. Lopez, and N. J. Kaplinsky (2009)
Plant Physiology 151, 241-252
   Abstract »    Full Text »    PDF »
Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX.
J. R. Lee, S. S. Lee, H. H. Jang, Y. M. Lee, J. H. Park, S.-C. Park, J. C. Moon, S. K. Park, S. Y. Kim, S. Y. Lee, et al. (2009)
PNAS 106, 5978-5983
   Abstract »    Full Text »    PDF »
Molecular and Genetic Evidence for the Key Role of AtCaM3 in Heat-Shock Signal Transduction in Arabidopsis.
W. Zhang, R.-G. Zhou, Y.-J. Gao, S.-Z. Zheng, P. Xu, S.-Q. Zhang, and D.-Y. Sun (2009)
Plant Physiology 149, 1773-1784
   Abstract »    Full Text »    PDF »
HSP90-buffered genetic variation is common in Arabidopsis thaliana.
T. A. Sangster, N. Salathia, H. N. Lee, E. Watanabe, K. Schellenberg, K. Morneau, H. Wang, S. Undurraga, C. Queitsch, and S. Lindquist (2008)
PNAS 105, 2969-2974
   Abstract »    Full Text »    PDF »
Chaperones in control of protein disaggregation.
K. Liberek, A. Lewandowska, and S. Zietkiewicz (2008)
EMBO J. 27, 328-335
   Abstract »    Full Text »    PDF »
Cytosolic HSP90 Regulates the Heat Shock Response That Is Responsible for Heat Acclimation in Arabidopsis thaliana.
K. Yamada, Y. Fukao, M. Hayashi, M. Fukazawa, I. Suzuki, and M. Nishimura (2007)
J. Biol. Chem. 282, 37794-37804
   Abstract »    Full Text »    PDF »
STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, Two DEAD-Box RNA Helicases That Attenuate Arabidopsis Responses to Multiple Abiotic Stresses.
P. Kant, S. Kant, M. Gordon, R. Shaked, and S. Barak (2007)
Plant Physiology 145, 814-830
   Abstract »    Full Text »    PDF »
A Rhizosphere Fungus Enhances Arabidopsis Thermotolerance through Production of an HSP90 Inhibitor.
C. A. McLellan, T. J. Turbyville, E.M. K. Wijeratne, A. Kerschen, E. Vierling, C. Queitsch, L. Whitesell, and A.A. L. Gunatilaka (2007)
Plant Physiology 145, 174-182
   Abstract »    Full Text »    PDF »
Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis.
C.-J. Shih and M.-C. Lai (2007)
Microbiology 153, 2572-2583
   Abstract »    Full Text »    PDF »
Transactivation of Protein Expression by Rice HSP101 in Planta and Using Hsp101 as a Selection Marker for Transformation.
C.-C. Chang, P.-S. Huang, H.-R. Lin, and C.-H. Lu (2007)
Plant Cell Physiol. 48, 1098-1107
   Abstract »    Full Text »    PDF »
Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay.
J. J. Burke (2007)
Plant Physiology 143, 108-121
   Abstract »    Full Text »    PDF »
A Heat-Inducible Transcription Factor, HsfA2, Is Required for Extension of Acquired Thermotolerance in Arabidopsis.
Y.-y. Charng, H.-c. Liu, N.-y. Liu, W.-t. Chi, C.-n. Wang, S.-h. Chang, and T.-t. Wang (2007)
Plant Physiology 143, 251-262
   Abstract »    Full Text »    PDF »
SIZ1 Small Ubiquitin-Like Modifier E3 Ligase Facilitates Basal Thermotolerance in Arabidopsis Independent of Salicylic Acid.
C. Y. Yoo, K. Miura, J. B. Jin, J. Lee, H. C. Park, D. E. Salt, D.-J. Yun, R. A. Bressan, and P. M. Hasegawa (2006)
Plant Physiology 142, 1548-1558
   Abstract »    Full Text »    PDF »
Improved Resistance to Controlled Deterioration in Transgenic Seeds.
P. Prieto-Dapena, R. Castano, C. Almoguera, and J. Jordano (2006)
Plant Physiology 142, 1102-1112
   Abstract »    Full Text »    PDF »
Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation.
Y.-y. Charng, H.-c. Liu, N.-y. Liu, F.-c. Hsu, and S.-s. Ko (2006)
Plant Physiology 140, 1297-1305
   Abstract »    Full Text »    PDF »
The Amino-terminal Domain of ClpB Supports Binding to Strongly Aggregated Proteins.
M. E. Barnett, M. Nagy, S. Kedzierska, and M. Zolkiewski (2005)
J. Biol. Chem. 280, 34940-34945
   Abstract »    Full Text »    PDF »
A Genome-Wide Analysis of the Effects of Sucrose on Gene Expression in Arabidopsis Seedlings under Anoxia.
E. Loreti, A. Poggi, G. Novi, A. Alpi, and P. Perata (2005)
Plant Physiology 137, 1130-1138
   Abstract »    Full Text »    PDF »
Azetidine-induced Accumulation of Class I Small Heat Shock Proteins in the Soluble Fraction Provides Thermotolerance in Soybean Seedlings.
T.-L. Jinn, C.-C. Chiu, W.-W. Song, Y.-M. Chen, and C.-Y. Lin (2004)
Plant Cell Physiol. 45, 1759-1767
   Abstract »    Full Text »    PDF »
Mitochondrial Respiratory Deficiencies Signal Up-regulation of Genes for Heat Shock Proteins.
E. V. Kuzmin, O. V. Karpova, T. E. Elthon, and K. J. Newton (2004)
J. Biol. Chem. 279, 20672-20677
   Abstract »    Full Text »    PDF »
Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313.
I. Mary, C.-J. Tu, A. Grossman, and D. Vaulot (2004)
Microbiology 150, 1271-1281
   Abstract »    Full Text »    PDF »
When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress.
L. Rizhsky, H. Liang, J. Shuman, V. Shulaev, S. Davletova, and R. Mittler (2004)
Plant Physiology 134, 1683-1696
   Abstract »    Full Text »    PDF »
clpB, a Novel Member of the Listeria monocytogenes CtsR Regulon, Is Involved in Virulence but Not in General Stress Tolerance.
A. Chastanet, I. Derre, S. Nair, and T. Msadek (2004)
J. Bacteriol. 186, 1165-1174
   Abstract »    Full Text »    PDF »
High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production.
L. W. Young, R. W. Wilen, and P. C. Bonham-Smith (2004)
J. Exp. Bot. 55, 485-495
   Abstract »    Full Text »    PDF »
Heat Sensitivity in a Bentgrass Variant. Failure to Accumulate a Chloroplast Heat Shock Protein Isoform Implicated in Heat Tolerance.
D. Wang and D. S. Luthe (2003)
Plant Physiology 133, 319-327
   Abstract »    Full Text »    PDF »
Thermotolerant Guard Cell Protoplasts of Tree Tobacco Do Not Require Exogenous Hormones to Survive in Culture and Are Blocked from Reentering the Cell Cycle at the G1-to-S Transition.
N. N. Gushwa, D. Hayashi, A. Kemper, B. Abram, J. E. Taylor, J. Upton, C. F. Tay, S. Fiedler, S. Pullen, L. P. Miller, et al. (2003)
Plant Physiology 132, 1925-1940
   Abstract »    Full Text »    PDF »
Calmodulin Is Involved in Heat Shock Signal Transduction in Wheat.
H.-T. Liu, B. Li, Z.-L. Shang, X.-Z. Li, R.-L. Mu, D.-Y. Sun, and R.-G. Zhou (2003)
Plant Physiology 132, 1186-1195
   Abstract »    Full Text »    PDF »
Physiological and Molecular Assessment of Altered Expression of Hsc70-1 in Arabidopsis. Evidence for Pleiotropic Consequences.
D. Y. Sung and C. L. Guy (2003)
Plant Physiology 132, 979-987
   Abstract »    Full Text »    PDF »
The Small Ubiquitin-like Modifier (SUMO) Protein Modification System in Arabidopsis. ACCUMULATION OF SUMO1 AND -2 CONJUGATES IS INCREASED BY STRESS.
J. Kurepa, J. M. Walker, J. Smalle, M. M. Gosink, S. J. Davis, T. L. Durham, D.-Y. Sung, and R. D. Vierstra (2003)
J. Biol. Chem. 278, 6862-6872
   Abstract »    Full Text »    PDF »
empty pericarp2 Encodes a Negative Regulator of the Heat Shock Response and Is Required for Maize Embryogenesis.
S. Fu, R. Meeley, and M. J. Scanlon (2002)
PLANT CELL 14, 3119-3132
   Abstract »    Full Text »    PDF »
Global Changes in Gene Expression in Response to High Light in Arabidopsis.
J. B. Rossel, I. W. Wilson, and B. J. Pogson (2002)
Plant Physiology 130, 1109-1120
   Abstract »    Full Text »    PDF »
ATP-dependent Hexameric Assembly of the Heat Shock Protein Hsp101 Involves Multiple Interaction Domains and a Functional C-proximal Nucleotide-binding Domain.
D. R. Gallie, D. Fortner, J. Peng, and D. Puthoff (2002)
J. Biol. Chem. 277, 39617-39626
   Abstract »    Full Text »    PDF »
Heat-tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park.
R. G. STOUT and T. S. AL-NIEMI (2002)
Ann. Bot. 90, 259-267
   Abstract »    Full Text »    PDF »
Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth.
J. Nieto-Sotelo, L. M. Martinez, G. Ponce, G. I. Cassab, A. Alagon, R. B. Meeley, J.-M. Ribaut, and R. Yang (2002)
PLANT CELL 14, 1621-1633
   Abstract »    Full Text »    PDF »
EVOLUTION: Chaperones as Buffering Agents?.
T. Mitchell-Olds and C. A. Knight (2002)
Science 296, 2348-2349
   Abstract »    Full Text »    PDF »
In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato.
S. K. Mishra, J. Tripp, S. Winkelhaus, B. Tschiersch, K. Theres, L. Nover, and K.-D. Scharf (2002)
Genes & Dev. 16, 1555-1567
   Abstract »    Full Text »    PDF »
Novel Form of ClpB/HSP100 Protein in the Cyanobacterium Synechococcus.
M.-J. Eriksson, J. Schelin, E. Miskiewicz, and A. K. Clarke (2001)
J. Bacteriol. 183, 7392-7396
   Abstract »    Full Text »    PDF »
Developmental and Thermal Regulation of the Maize Heat Shock Protein, HSP101.
T. E. Young, J. Ling, C. J. Geisler-Lee, R. L. Tanguay, C. Caldwell, and D. R. Gallie (2001)
Plant Physiology 127, 777-791
   Abstract »    Full Text »    PDF »
HSP101: A Key Component for the Acquisition of Thermotolerance in Plants.
W. B. Gurley (2000)
PLANT CELL 12, 457-460
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882