Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PLANT CELL 12 (7): 1103-1116

Copyright © 2000 by the American Society of Plant Physiologists.

Plant Cell, Vol. 12, 1103-1116, July 2000, Copyright © 2000, American Society of Plant Physiologists Interactions between Abscisic Acid and Ethylene Signaling Cascades Nathalie Beaudoina, Carine Serizeta, Françoise Gostia, and Jérôme Giraudata a Institut des Sciences Végétales, Centre National de la Recherche Scientifique UPR 40, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France Jérôme Giraudat, jerome.giraudat{at} (E-mail), 33-1-69-82-36-95 (fax)

We screened for mutations that either enhanced or suppressed the abscisic acid (ABA)–resistant seed germination phenotype of the Arabidopsis abi1-1 mutant. Alleles of the constitutive ethylene response mutant ctr1 and ethylene-insensitive mutant ein2 were recovered as enhancer and suppressor mutations, respectively. Using these and other ethylene response mutants, we showed that the ethylene signaling cascade defined by the ETR1, CTR1, and EIN2 genes inhibits ABA signaling in seeds. Furthermore, epistasis analysis between ethylene- and ABA-insensitive mutations indicated that endogenous ethylene promotes seed germination by decreasing sensitivity to endogenous ABA. In marked contrast to the situation in seeds, ein2 and etr1-1 roots were resistant to both ABA and ethylene. Our data indicate that ABA inhibition of root growth requires a functional ethylene signaling cascade, although this inhibition is apparently not mediated by an increase in ethylene biosynthesis. These results are discussed in the context of the other hormonal regulations controlling seed germination and root growth.

Responses of root architecture development to low phosphorus availability: a review.
Y. F. Niu, R. S. Chai, G. L. Jin, H. Wang, C. X. Tang, and Y. S. Zhang (2013)
Ann. Bot. 112, 391-408
   Abstract »    Full Text »    PDF »
WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.
L. Chen, L. Zhang, D. Li, F. Wang, and D. Yu (2013)
PNAS 110, E1963-E1971
   Abstract »    Full Text »    PDF »
STIFDB2: An Updated Version of Plant Stress-Responsive TranscrIption Factor DataBase with Additional Stress Signals, Stress-Responsive Transcription Factor Binding Sites and Stress-Responsive Genes in Arabidopsis and Rice.
M. Naika, K. Shameer, O. K. Mathew, R. Gowda, and R. Sowdhamini (2013)
Plant Cell Physiol. 54, e8
   Abstract »    Full Text »    PDF »
Regulation of soybean seed germination through ethylene production in response to reactive oxygen species.
Y. Ishibashi, Y. Koda, S.-H. Zheng, T. Yuasa, and M. Iwaya-Inoue (2013)
Ann. Bot. 111, 95-102
   Abstract »    Full Text »    PDF »
Arabidopsis Paired Amphipathic Helix Proteins SNL1 and SNL2 Redundantly Regulate Primary Seed Dormancy via Abscisic Acid-Ethylene Antagonism Mediated by Histone Deacetylation.
Z. Wang, H. Cao, Y. Sun, X. Li, F. Chen, A. Carles, Y. Li, M. Ding, C. Zhang, X. Deng, et al. (2013)
PLANT CELL 25, 149-166
   Abstract »    Full Text »    PDF »
The Time Required for Dormancy Release in Arabidopsis Is Determined by DELAY OF GERMINATION1 Protein Levels in Freshly Harvested Seeds.
K. Nakabayashi, M. Bartsch, Y. Xiang, E. Miatton, S. Pellengahr, R. Yano, M. Seo, and W. J. J. Soppe (2012)
PLANT CELL 24, 2826-2838
   Abstract »    Full Text »    PDF »
Thermoinhibition Uncovers a Role for Strigolactones in Arabidopsis Seed Germination.
S. Toh, Y. Kamiya, N. Kawakami, E. Nambara, P. McCourt, and Y. Tsuchiya (2012)
Plant Cell Physiol. 53, 107-117
   Abstract »    Full Text »    PDF »
In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis.
R. Narsai, S. R. Law, C. Carrie, L. Xu, and J. Whelan (2011)
Plant Physiology 157, 1342-1362
   Abstract »    Full Text »    PDF »
Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis.
H. Dong, Z. Zhen, J. Peng, L. Chang, Q. Gong, and N. N. Wang (2011)
J. Exp. Bot. 62, 4875-4887
   Abstract »    Full Text »    PDF »
Expression Profile of Maize (Zea mays L.) Embryonic Axes During Germination: Translational Regulation of Ribosomal Protein mRNAs.
S. Jimenez-Lopez, E. Mancera-Martinez, A. Donayre-Torres, C. Rangel, L. Uribe, S. March, G. Jimenez-Sanchez, and E. Sanchez de Jimenez (2011)
Plant Cell Physiol. 52, 1719-1733
   Abstract »    Full Text »    PDF »
ABA-Mediated Heterophylly is Regulated by Differential Expression of 9-cis-Epoxycarotenoid Dioxygenase 3 in Lilies.
H.-C. Chen, S.-G. Hwang, S.-M. Chen, C.-T. Shii, and W.-H. Cheng (2011)
Plant Cell Physiol. 52, 1806-1821
   Abstract »    Full Text »    PDF »
The Arabidopsis Mitochondria-Localized Pentatricopeptide Repeat Protein PGN Functions in Defense against Necrotrophic Fungi and Abiotic Stress Tolerance.
K. Laluk, S. AbuQamar, and T. Mengiste (2011)
Plant Physiology 156, 2053-2068
   Abstract »    Full Text »    PDF »
Role of endogenous hormones, glumes, endosperm and temperature on germination of Leymus chinensis (Poaceae) seeds during development.
H. Ma, Z. Liang, H. Wu, L. Huang, and Z. Wang (2010)
J Plant Ecol 3, 269-277
   Abstract »    Full Text »    PDF »
Comprehensive Hormone Profiling in Developing Arabidopsis Seeds: Examination of the Site of ABA Biosynthesis, ABA Transport and Hormone Interactions.
Y. Kanno, Y. Jikumaru, A. Hanada, E. Nambara, S. R. Abrams, Y. Kamiya, and M. Seo (2010)
Plant Cell Physiol. 51, 1988-2001
   Abstract »    Full Text »    PDF »
Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae).
P. P. Tonini, E. Purgatto, and M. S. Buckeridge (2010)
Ann. Bot. 106, 607-616
   Abstract »    Full Text »    PDF »
Arabidopsis RING E3 Ligase XBAT32 Regulates Lateral Root Production through Its Role in Ethylene Biosynthesis.
M. E. Prasad, A. Schofield, W. Lyzenga, H. Liu, and S. L. Stone (2010)
Plant Physiology 153, 1587-1596
   Abstract »    Full Text »    PDF »
Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling.
D. De Vleesschauwer, Y. Yang, C. Vera Cruz, and M. Hofte (2010)
Plant Physiology 152, 2036-2052
   Abstract »    Full Text »    PDF »
Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.
G. Zolla, Y. M. Heimer, and S. Barak (2010)
J. Exp. Bot. 61, 211-224
   Abstract »    Full Text »    PDF »
The Nuclear Interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 Is a Positive Regulator of Abscisic Acid Signaling in Seeds and Stress.
X. Saavedra, A. Modrego, D. Rodriguez, M. P. Gonzalez-Garcia, L. Sanz, G. Nicolas, and O. Lorenzo (2010)
Plant Physiology 152, 133-150
   Abstract »    Full Text »    PDF »
Ethylene Interacts with Abscisic Acid to Regulate Endosperm Rupture during Germination: A Comparative Approach Using Lepidium sativum and Arabidopsis thaliana.
A. Linkies, K. Muller, K. Morris, V. Tureckova, M. Wenk, C. S.C. Cadman, F. Corbineau, M. Strnad, J. R. Lynn, W. E. Finch-Savage, et al. (2009)
PLANT CELL 21, 3803-3822
   Abstract »    Full Text »    PDF »
Expression of the Arabidopsis Mutant abi1 Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars.
M. Arend, J.-P. Schnitzler, B. Ehlting, R. Hansch, T. Lange, H. Rennenberg, A. Himmelbach, E. Grill, and J. Fromm (2009)
Plant Physiology 151, 2110-2119
   Abstract »    Full Text »    PDF »
Abscisic Acid Represses Growth of the Arabidopsis Embryonic Axis after Germination by Enhancing Auxin Signaling.
C. Belin, C. Megies, E. Hauserova, and L. Lopez-Molina (2009)
PLANT CELL 21, 2253-2268
   Abstract »    Full Text »    PDF »
HORMONOMETER: A Tool for Discerning Transcript Signatures of Hormone Action in the Arabidopsis Transcriptome.
D. Volodarsky, N. Leviatan, A. Otcheretianski, and R. Fluhr (2009)
Plant Physiology 150, 1796-1805
   Abstract »    Full Text »    PDF »
The Short-Rooted Phenotype of the brevis radix Mutant Partly Reflects Root Abscisic Acid Hypersensitivity.
A. Rodrigues, J. Santiago, S. Rubio, A. Saez, K. S. Osmont, J. Gadea, C. S. Hardtke, and P. L. Rodriguez (2009)
Plant Physiology 149, 1917-1928
   Abstract »    Full Text »    PDF »
Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response.
N. K. Clay, A. M. Adio, C. Denoux, G. Jander, and F. M. Ausubel (2009)
Science 323, 95-101
   Abstract »    Full Text »    PDF »
Thigmomorphogenesis: a complex plant response to mechano-stimulation.
E. W. Chehab, E. Eich, and J. Braam (2009)
J. Exp. Bot. 60, 43-56
   Abstract »    Full Text »    PDF »
Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling.
A. Wawrzynska, K. M. Christiansen, Y. Lan, N. L. Rodibaugh, and R. W. Innes (2008)
Plant Physiology 148, 1510-1522
   Abstract »    Full Text »    PDF »
The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity.
U. Piskurewicz, Y. Jikumaru, N. Kinoshita, E. Nambara, Y. Kamiya, and L. Lopez-Molina (2008)
PLANT CELL 20, 2729-2745
   Abstract »    Full Text »    PDF »
Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin, and Ethylene Biosynthesis, Metabolism, and Response Genes.
J. Argyris, P. Dahal, E. Hayashi, D. W. Still, and K. J. Bradford (2008)
Plant Physiology 148, 926-947
   Abstract »    Full Text »    PDF »
Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco.
J. Zhou, H. Zhang, Y. Yang, Z. Zhang, H. Zhang, X. Hu, J. Chen, X.-C. Wang, and R. Huang (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis.
T. Aki, M. Konishi, T. Kikuchi, T. Fujimori, T. Yoneyama, and S. Yanagisawa (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.
K. Hermann, J. Meinhard, P. Dobrev, A. Linkies, B. Pesek, B. Hess, I. Machackova, U. Fischer, and G. Leubner-Metzger (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
ABA Regulates Apoplastic Sugar Transport and is a Potential Signal for Cold-Induced Pollen Sterility in Rice.
S. N. Oliver, E. S. Dennis, and R. Dolferus (2007)
Plant Cell Physiol. 48, 1319-1330
   Abstract »    Full Text »    PDF »
Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene.
M. Kraft, R. Kuglitsch, J. Kwiatkowski, M. Frank, and K. Grossmann (2007)
J. Exp. Bot. 58, 1497-1503
   Abstract »    Full Text »    PDF »
Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance.
C. Hernandez-Blanco, D. X. Feng, J. Hu, A. Sanchez-Vallet, L. Deslandes, F. Llorente, M. Berrocal-Lobo, H. Keller, X. Barlet, C. Sanchez-Rodriguez, et al. (2007)
PLANT CELL 19, 890-903
   Abstract »    Full Text »    PDF »
AHK5 Histidine Kinase Regulates Root Elongation Through an ETR1-Dependent Abscisic Acid and Ethylene Signaling Pathway in Arabidopsis thaliana.
A. Iwama, T. Yamashino, Y. Tanaka, H. Sakakibara, T. Kakimoto, S. Sato, T. Kato, S. Tabata, A. Nagatani, and T. Mizuno (2007)
Plant Cell Physiol. 48, 375-380
   Abstract »    Full Text »    PDF »
Abscisic Acid Antagonizes Ethylene-Induced Hyponastic Growth in Arabidopsis.
J. J. Benschop, F. F. Millenaar, M. E. Smeets, M. van Zanten, L. A.C.J. Voesenek, and A. J.M. Peeters (2007)
Plant Physiology 143, 1013-1023
   Abstract »    Full Text »    PDF »
The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity.
A. Rosado, A. L. Schapire, R. A. Bressan, A. L. Harfouche, P. M. Hasegawa, V. Valpuesta, and M. A. Botella (2006)
Plant Physiology 142, 1113-1126
   Abstract »    Full Text »    PDF »
ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci.
A. Rosado, I. Amaya, V. Valpuesta, J. Cuartero, M. A. Botella, and O. Borsani (2006)
J. Exp. Bot. 57, 3327-3335
   Abstract »    Full Text »    PDF »
The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas.
X.-C. Tang, Y.-Q. He, Y. Wang, and M.-X. Sun (2006)
J. Exp. Bot. 57, 2639-2650
   Abstract »    Full Text »    PDF »
Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis.
S. Footitt, J. Marquez, H. Schmuths, A. Baker, F. L. Theodoulou, and M. Holdsworth (2006)
J. Exp. Bot. 57, 2805-2814
   Abstract »    Full Text »    PDF »
From The Cover: Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling.
C. S. Barry and J. J. Giovannoni (2006)
PNAS 103, 7923-7928
   Abstract »    Full Text »    PDF »
G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development.
S. Pandey, J.-G. Chen, A. M. Jones, and S. M. Assmann (2006)
Plant Physiology 141, 243-256
   Abstract »    Full Text »    PDF »
The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA.
J. M. Kuhn, A. Boisson-Dernier, M. B. Dizon, M. H. Maktabi, and J. I. Schroeder (2006)
Plant Physiology 140, 127-139
   Abstract »    Full Text »    PDF »
ABR1, an APETALA2-Domain Transcription Factor That Functions as a Repressor of ABA Response in Arabidopsis.
G. K. Pandey, J. J. Grant, Y. H. Cheong, B. G. Kim, L. Li, and S. Luan (2005)
Plant Physiology 139, 1185-1193
   Abstract »    Full Text »    PDF »
Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid.
B. Steffens and M. Sauter (2005)
Plant Physiology 139, 713-721
   Abstract »    Full Text »    PDF »
Identification and characterization of mutants capable of rapid seed germination at 10 {degrees}C from activation-tagged lines of Arabidopsis thaliana.
L. Salaita, R. K. Kar, M. Majee, and A. B. Downie (2005)
J. Exp. Bot. 56, 2059-2069
   Abstract »    Full Text »    PDF »
A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development.
J. M. Barrero, P. Piqueras, M. Gonzalez-Guzman, R. Serrano, P. L. Rodriguez, M. R. Ponce, and J. L. Micol (2005)
J. Exp. Bot. 56, 2071-2083
   Abstract »    Full Text »    PDF »
The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation.
X. Zhang, V. Garreton, and N.-H. Chua (2005)
Genes & Dev. 19, 1532-1543
   Abstract »    Full Text »    PDF »
The climacteric-like behaviour of young, mature and wounded citrus leaves.
E. Katz, J. Riov, D. Weiss, and E. E. Goldschmidt (2005)
J. Exp. Bot. 56, 1359-1367
   Abstract »    Full Text »    PDF »
Plant G Proteins, Phytohormones, and Plasticity: Three Questions and a Speculation.
S. M. Assmann (2004)
Sci. STKE 2004, re20
   Abstract »    Full Text »    PDF »
Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis.
J. P. Anderson, E. Badruzsaufari, P. M. Schenk, J. M. Manners, O. J. Desmond, C. Ehlert, D. J. Maclean, P. R. Ebert, and K. Kazan (2004)
PLANT CELL 16, 3460-3479
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Novel Mutants Affecting the Abscisic Acid Sensitivity of Arabidopsis Germination and Seedling Growth.
N. Nishimura, T. Yoshida, M. Murayama, T. Asami, K. Shinozaki, and T. Hirayama (2004)
Plant Cell Physiol. 45, 1485-1499
   Abstract »    Full Text »    PDF »
The Central Role of PhEIN2 in Ethylene Responses throughout Plant Development in Petunia.
K. Shibuya, K. G. Barry, J. A. Ciardi, H. M. Loucas, B. A. Underwood, S. Nourizadeh, J. R. Ecker, H. J. Klee, and D. G. Clark (2004)
Plant Physiology 136, 2900-2912
   Abstract »    Full Text »    PDF »
Uncoupling the Effects of Abscisic Acid on Plant Growth and Water Relations. Analysis of sto1/nced3, an Abscisic Acid-Deficient but Salt Stress-Tolerant Mutant in Arabidopsis.
B. Ruggiero, H. Koiwa, Y. Manabe, T. M. Quist, G. Inan, F. Saccardo, R. J. Joly, P. M. Hasegawa, R. A. Bressan, and A. Maggio (2004)
Plant Physiology 136, 3134-3147
   Abstract »    Full Text »    PDF »
Global Transcription Profiling Reveals Multiple Sugar Signal Transduction Mechanisms in Arabidopsis.
J. Price, A. Laxmi, S. K. St. Martin, and J.-C. Jang (2004)
PLANT CELL 16, 2128-2150
   Abstract »    Full Text »    PDF »
Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein-Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses.
R. Ahlfors, S. Lang, K. Overmyer, P. Jaspers, M. Brosche, A. Tauriainen, H. Kollist, H. Tuominen, E. Belles-Boix, M. Piippo, et al. (2004)
PLANT CELL 16, 1925-1937
   Abstract »    Full Text »    PDF »
Hydrogen peroxide mediates plant root cell response to nutrient deprivation.
R. Shin and D. P. Schachtman (2004)
PNAS 101, 8827-8832
   Abstract »    Full Text »    PDF »
Ethylene Insensitivity Does Not Increase Leaf Area or Relative Growth Rate in Arabidopsis, Nicotiana tabacum, and Petunia x hybrida.
D. Tholen, L. A.C.J. Voesenek, and H. Poorter (2004)
Plant Physiology 134, 1803-1812
   Abstract »    Full Text »    PDF »
The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 Locus Encodes a Novel Protein Mediating Abscisic Acid and Sugar Responses Essential for Growth.
I. Brocard-Gifford, T. J. Lynch, M. E. Garcia, B. Malhotra, and R. R. Finkelstein (2004)
PLANT CELL 16, 406-421
   Abstract »    Full Text »    PDF »
Hormone signalling from a developmental context.
B. Chow and P. McCourt (2004)
J. Exp. Bot. 55, 247-251
   Abstract »    Full Text »    PDF »
Maintenance of shoot growth by endogenous ABA: genetic assessment of the involvement of ethylene suppression.
M. E. LeNoble, W. G. Spollen, and R. E. Sharp (2004)
J. Exp. Bot. 55, 237-245
   Abstract »    Full Text »    PDF »
Characterization of Mutants in Arabidopsis Showing Increased Sugar-Specific Gene Expression, Growth, and Developmental Responses.
M. Baier, G. Hemmann, R. Holman, F. Corke, R. Card, C. Smith, F. Rook, and M. W. Bevan (2004)
Plant Physiology 134, 81-91
   Abstract »    Full Text »    PDF »
Vascularization, High-Volume Solution Flow, and Localized Roles for Enzymes of Sucrose Metabolism during Tumorigenesis by Agrobacterium tumefaciens.
R. Wachter, M. Langhans, R. Aloni, S. Gotz, A. Weilmunster, A. Koops, L. Temguia, I. Mistrik, J. Pavlovkin, U. Rascher, et al. (2003)
Plant Physiology 133, 1024-1037
   Abstract »    Full Text »    PDF »
Hormones are in the air.
H. Klee (2003)
PNAS 100, 10144-10145
   Full Text »    PDF »
Three Genes That Affect Sugar Sensing (Abscisic Acid Insensitive 4, Abscisic Acid Insensitive 5, and Constitutive Triple Response 1) Are Differentially Regulated by Glucose in Arabidopsis.
A. Arroyo, F. Bossi, R. R. Finkelstein, and P. Leon (2003)
Plant Physiology 133, 231-242
   Abstract »    Full Text »    PDF »
Class I Chitinase and {beta}-1,3-Glucanase Are Differentially Regulated by Wounding, Methyl Jasmonate, Ethylene, and Gibberellin in Tomato Seeds and Leaves.
C.-T. Wu and K. J. Bradford (2003)
Plant Physiology 133, 263-273
   Abstract »    Full Text »    PDF »
Mechanisms of Glucose Signaling during Germination of Arabidopsis.
J. Price, T.-C. Li, S. G. Kang, J. K. Na, and J.-C. Jang (2003)
Plant Physiology 132, 1424-1438
   Abstract »    Full Text »    PDF »
Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling.
M. Suzuki, M. G. Ketterling, Q.-B. Li, and D. R. McCarty (2003)
Plant Physiology 132, 1664-1677
   Abstract »    Full Text »    PDF »
Ethylene Modulates Root-Wave Responses in Arabidopsis.
C. S. Buer, G. O. Wasteneys, and J. Masle (2003)
Plant Physiology 132, 1085-1096
   Abstract »    Full Text »    PDF »
Cross-talk in Plant Hormone Signalling: What Arabidopsis Mutants Are Telling Us.
Ann. Bot. 91, 605-612
   Abstract »    Full Text »    PDF »
Ethylene as a possible cue for seed germination of Schoenoplectus hallii (Cyperaceae), a rare summer annual of occasionally flooded sites.
C. C. Baskin, J. M. Baskin, E. W. Chester, and M. Smith (2003)
Am. J. Botany 90, 620-627
   Abstract »    Full Text »    PDF »
Genetic approaches to understanding sugar-response pathways.
F. Rook and M. W. Bevan (2003)
J. Exp. Bot. 54, 495-501
   Abstract »    Full Text »    PDF »
Abscisic Acid Biosynthesis Gene Underscores the Complexity of Sugar, Stress, and Hormone Interactions.
N. A. Eckardt (2002)
PLANT CELL 14, 2645-2649
   Full Text »    PDF »
A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions.
W.-H. Cheng, A. Endo, L. Zhou, J. Penney, H.-C. Chen, A. Arroyo, P. Leon, E. Nambara, T. Asami, M. Seo, et al. (2002)
PLANT CELL 14, 2723-2743
   Abstract »    Full Text »    PDF »
Plasma Membrane-Associated ROP10 Small GTPase Is a Specific Negative Regulator of Abscisic Acid Responses in Arabidopsis.
Z.-L. Zheng, M. Nafisi, A. Tam, H. Li, D. N. Crowell, S. N. Chary, J. I. Schroeder, J. Shen, and Z. Yang (2002)
PLANT CELL 14, 2787-2797
   Abstract »    Full Text »    PDF »
Disruption of a Guard Cell-Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis.
J. M. Kwak, J.-H. Moon, Y. Murata, K. Kuchitsu, N. Leonhardt, A. DeLong, and J. I. Schroeder (2002)
PLANT CELL 14, 2849-2861
   Abstract »    Full Text »    PDF »
The KNAT2 Homeodomain Protein Interacts with Ethylene and Cytokinin Signaling.
O. Hamant, F. Nogue, E. Belles-Boix, D. Jublot, O. Grandjean, J. Traas, and V. Pautot (2002)
Plant Physiology 130, 657-665
   Abstract »    Full Text »    PDF »
Cross-Talk in Abscisic Acid Signaling.
N. V. Fedoroff (2002)
Sci. STKE 2002, re10
   Abstract »    Full Text »    PDF »
A Screen for Genes That Function in Abscisic Acid Signaling in Arabidopsis thaliana.
E. Nambara, M. Suzuki, S. Abrams, D. R. McCarty, Y. Kamiya, and P. McCourt (2002)
Genetics 161, 1247-1255
   Abstract »    Full Text »    PDF »
Role of a Heterotrimeric G Protein in Regulation of Arabidopsis Seed Germination.
H. Ullah, J.-G. Chen, S. Wang, and A. M. Jones (2002)
Plant Physiology 129, 897-907
   Abstract »    Full Text »    PDF »
Abscisic Acid Signaling in Seeds and Seedlings.
R. R. Finkelstein, S. S. L. Gampala, and C. D. Rock (2002)
PLANT CELL 14, S15-S45
   Full Text »    PDF »
Ethylene Biosynthesis and Signaling Networks.
K. L.-C. Wang, H. Li, and J. R. Ecker (2002)
PLANT CELL 14, S131-S151
   Full Text »    PDF »
Sugar Sensing and Signaling in Plants.
F. Rolland, B. Moore, and J. Sheen (2002)
PLANT CELL 14, S185-S205
   Full Text »    PDF »
Arabidopsis Basic Leucine Zipper Proteins That Mediate Stress-Responsive Abscisic Acid Signaling.
J.-y. Kang, H.-i. Choi, M.-y. Im, and S. Y. Kim (2002)
PLANT CELL 14, 343-357
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882