Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 13 (12): 2687-2702

Copyright © 2001 by the American Society of Plant Physiologists.

Tomato SP-Interacting Proteins Define a Conserved Signaling System That Regulates Shoot Architecture and Flowering

Lilac Pnuelia, Tamar Gutfingera, Dana Harevena, Orna Ben-Naima, Neta Rona, Noam Adirb, and Eliezer Lifschitz1,a

a Department of Biology, Science and Technology, Technion, Israel Institute of Technology 32000, Haifa, Israel
b Department of Chemistry and Institute of Catalysis, Science and Technology, Technion, Israel Institute of Technology 32000, Haifa, Israel

1 To whom correspondence should be addressed. E-mail lifs{at}techunix.technion.ac.il; fax 972-4-8225153

Abstract: Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that interact with SP (SIPs) and with its homologs from other species: a NIMA-like kinase (SPAK), a bZIP factor, a novel 10-kD protein, and 14-3-3 isoforms. SPAK, by analogy with Raf1, has two potential binding sites for 14-3-3 proteins, one of which is shared with SP. Surprisingly, overexpression of 14-3-3 proteins partially ameliorates the effect of the sp mutation. Analysis of the binding potential of chosen mutant SP variants, in relation to conformational features known to be conserved in this new family of regulatory proteins, suggests that associations with other proteins are required for the biological function of SP and that ligand binding and protein–protein association domains of SP may be separated. We suggest that CETS genes encode a family of modulator proteins with the potential to interact with a variety of signaling proteins in a manner analogous to that of 14-3-3 proteins.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses.
A.-R. Corrales, S. G. Nebauer, L. Carrillo, P. Fernandez-Nohales, J. Marques, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa, R.-V. Molina, et al. (2014)
J. Exp. Bot. 65, 995-1012
   Abstract »    Full Text »    PDF »
Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T.
W. W. H. Ho and D. Weigel (2014)
PLANT CELL 26, 552-564
   Abstract »    Full Text »    PDF »
Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
N. Seedat, A. Dinsdale, E. K. Ong, and A. R. Gendall (2013)
J. Exp. Bot. 64, 2767-2778
   Abstract »    Full Text »    PDF »
BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems in Arabidopsis.
M. Niwa, Y. Daimon, K.-i. Kurotani, A. Higo, J. L. Pruneda-Paz, G. Breton, N. Mitsuda, S. A. Kay, M. Ohme-Takagi, M. Endo, et al. (2013)
PLANT CELL 25, 1228-1242
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue.
M. Randoux, J. Jeauffre, T. Thouroude, F. Vasseur, L. Hamama, M. Juchaux, S. Sakr, and F. Foucher (2012)
J. Exp. Bot. 63, 6543-6554
   Abstract »    Full Text »    PDF »
Mutation in TERMINAL FLOWER1 Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry Fragaria vesca.
E. A. Koskela, K. Mouhu, M. C. Albani, T. Kurokura, M. Rantanen, D. J. Sargent, N. H. Battey, G. Coupland, P. Elomaa, and T. Hytonen (2012)
Plant Physiology 159, 1043-1054
   Abstract »    Full Text »    PDF »
Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
A. Porri, S. Torti, M. Romera-Branchat, and G. Coupland (2012)
Development 139, 2198-2209
   Abstract »    Full Text »    PDF »
The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system.
J. D. Mayfield, A.-L. Paul, and R. J. Ferl (2012)
J. Exp. Bot. 63, 3061-3070
   Abstract »    Full Text »    PDF »
Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression.
S. Hanano and K. Goto (2011)
PLANT CELL 23, 3172-3184
   Abstract »    Full Text »    PDF »
The SINA E3 Ligase OsDIS1 Negatively Regulates Drought Response in Rice.
Y. Ning, C. Jantasuriyarat, Q. Zhao, H. Zhang, S. Chen, J. Liu, L. Liu, S. Tang, C. H. Park, X. Wang, et al. (2011)
Plant Physiology 157, 242-255
   Abstract »    Full Text »    PDF »
Long-distance regulation of flowering time.
C. Turnbull (2011)
J. Exp. Bot. 62, 4399-4413
   Abstract »    Full Text »    PDF »
Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.
N. Mimida, S.-I. Kidou, H. Iwanami, S. Moriya, K. Abe, C. Voogd, E. Varkonyi-Gasic, and N. Kotoda (2011)
Tree Physiol
   Abstract »    Full Text »    PDF »
Aa TFL1 Confers an Age-Dependent Response to Vernalization in Perennial Arabis alpina.
R. Wang, M. C. Albani, C. Vincent, S. Bergonzi, M. Luan, Y. Bai, C. Kiefer, R. Castillo, and G. Coupland (2011)
PLANT CELL 23, 1307-1321
   Abstract »    Full Text »    PDF »
Raf Kinase Inhibitor Protein RKIP Enhances Signaling by Glycogen Synthase Kinase-3{beta}.
F. Al-Mulla, M. S. Bitar, M. Al-Maghrebi, A. I. Behbehani, W. Al-Ali, O. Rath, B. Doyle, K. Y. Tan, A. Pitt, and W. Kolch (2011)
Cancer Res. 71, 1334-1343
   Abstract »    Full Text »    PDF »
Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
H. M. S. Smith, N. Ung, S. Lal, and J. Courtier (2011)
J. Exp. Bot. 62, 583-593
   Abstract »    Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
The Soybean Stem Growth Habit Gene Dt1 Is an Ortholog of Arabidopsis TERMINAL FLOWER1.
B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, et al. (2010)
Plant Physiology 153, 198-210
   Abstract »    Full Text »    PDF »
ANKYRIN REPEAT-CONTAINING PROTEIN 2A Is an Essential Molecular Chaperone for Peroxisomal Membrane-Bound ASCORBATE PEROXIDASE3 in Arabidopsis.
G. Shen, S. Kuppu, S. Venkataramani, J. Wang, J. Yan, X. Qiu, and H. Zhang (2010)
PLANT CELL 22, 811-831
   Abstract »    Full Text »    PDF »
The flowering hormone florigen functions as a general systemic regulator of growth and termination.
A. Shalit, A. Rozman, A. Goldshmidt, J. P. Alvarez, J. L. Bowman, Y. Eshed, and E. Lifschitz (2009)
PNAS 106, 8392-8397
   Abstract »    Full Text »    PDF »
Cytoplasmic Male Sterility-Related Protein Kinase, OsNek3, is Regulated Downstream of Mitochondrial Protein Phosphatase 2C, DCW11.
S. Fujii, M. Yamada, and K. Toriyama (2009)
Plant Cell Physiol. 50, 828-837
   Abstract »    Full Text »    PDF »
Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING.
T. Elitzur, H. Nahum, Y. Borovsky, I. Pekker, Y. Eshed, and I. Paran (2009)
J. Exp. Bot. 60, 869-880
   Abstract »    Full Text »    PDF »
The 14-3-3 Protein GF14c Acts as a Negative Regulator of Flowering in Rice by Interacting with the Florigen Hd3a.
Y. A. Purwestri, Y. Ogaki, S. Tamaki, H. Tsuji, and K. Shimamoto (2009)
Plant Cell Physiol. 50, 429-438
   Abstract »    Full Text »    PDF »
Multiple Regulatory Roles for SELF-PRUNING in the Shoot System of Tomato.
E. Lifschitz (2008)
Plant Physiology 148, 1737-1738
   Full Text »    PDF »
Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering.
M. Notaguchi, M. Abe, T. Kimura, Y. Daimon, T. Kobayashi, A. Yamaguchi, Y. Tomita, K. Dohi, M. Mori, and T. Araki (2008)
Plant Cell Physiol. 49, 1645-1658
   Abstract »    Full Text »    PDF »
Revisiting the Involvement of SELF-PRUNING in the Sympodial Growth of Tomato.
J. Thouet, M. Quinet, S. Ormenese, J.-M. Kinet, and C. Perilleux (2008)
Plant Physiology 148, 61-64
   Full Text »    PDF »
Mapping Homologous Sequences for Determinacy and Photoperiod Sensitivity in Common Bean (Phaseolus vulgaris).
M. Kwak, D. Velasco, and P. Gepts (2008)
J. Hered. 99, 283-291
   Abstract »    Full Text »    PDF »
The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole.
E. J. Sohn, M. Rojas-Pierce, S. Pan, C. Carter, A. Serrano-Mislata, F. Madueno, E. Rojo, M. Surpin, and N. V. Raikhel (2007)
PNAS 104, 18801-18806
   Abstract »    Full Text »    PDF »
Move on up, it's time for change mobile signals controlling photoperiod-dependent flowering.
Y. Kobayashi and D. Weigel (2007)
Genes & Dev. 21, 2371-2384
   Abstract »    Full Text »    PDF »
Genealogy and fine mapping of obscuravenosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopersicon esculentum; Solanaceae).
C. M. Jones, C. M. Rick, D. Adams, J. Jernstedt, and R. T. Chetelat (2007)
Am. J. Botany 94, 935-947
   Abstract »    Full Text »    PDF »
TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture.
L. Conti and D. Bradley (2007)
PLANT CELL 19, 767-778
   Abstract »    Full Text »    PDF »
SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana.
M. L. Churchman, M. L. Brown, N. Kato, V. Kirik, M. Hulskamp, D. Inze, L. De Veylder, J. D. Walker, Z. Zheng, D. G. Oppenheimer, et al. (2006)
PLANT CELL 18, 3145-3157
   Abstract »    Full Text »    PDF »
Reproductive meristem fates in Gerbera.
T. H. Teeri, A. Uimari, M. Kotilainen, R. Laitinen, H. Help, P. Elomaa, and V. A. Albert (2006)
J. Exp. Bot. 57, 3445-3455
   Abstract »    Full Text »    PDF »
Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.
E. Lifschitz and Y. Eshed (2006)
J. Exp. Bot. 57, 3405-3414
   Abstract »    Full Text »    PDF »
Genetic and physiological characterization of tomato cv. Micro-Tom.
E. Marti, C. Gisbert, G. J. Bishop, M. S. Dixon, and J. L. Garcia-Martinez (2006)
J. Exp. Bot. 57, 2037-2047
   Abstract »    Full Text »    PDF »
The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.
E. Lifschitz, T. Eviatar, A. Rozman, A. Shalit, A. Goldshmidt, Z. Amsellem, J. P. Alvarez, and Y. Eshed (2006)
PNAS 103, 6398-6403
   Abstract »    Full Text »    PDF »
A divergent external loop confers antagonistic activity on floral regulators FT and TFL1.
J. H. Ahn, D. Miller, V. J. Winter, M. J. Banfield, J. H. Lee, S. Y. Yoo, S. R. Henz, R. L. Brady, and D. Weigel (2006)
EMBO J. 25, 605-614
   Abstract »    Full Text »    PDF »
The Flowering Integrator FT Regulates SEPALLATA3 and FRUITFULL Accumulation in Arabidopsis Leaves.
P. Teper-Bamnolker and A. Samach (2005)
PLANT CELL 17, 2661-2675
   Abstract »    Full Text »    PDF »
Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis.
P. A. Wigge, M. C. Kim, K. E. Jaeger, W. Busch, M. Schmid, J. U. Lohmann, and D. Weigel (2005)
Science 309, 1056-1059
   Abstract »    Full Text »    PDF »
Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis.
T. Mizoguchi, L. Wright, S. Fujiwara, F. Cremer, K. Lee, H. Onouchi, A. Mouradov, S. Fowler, H. Kamada, J. Putterill, et al. (2005)
PLANT CELL 17, 2255-2270
   Abstract »    Full Text »    PDF »
A single amino acid converts a repressor to an activator of flowering.
Y. Hanzawa, T. Money, and D. Bradley (2005)
PNAS 102, 7748-7753
   Abstract »    Full Text »    PDF »
CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis.
H. An, C. Roussot, P. Suarez-Lopez, L. Corbesier, C. Vincent, M. Pineiro, S. Hepworth, A. Mouradov, S. Justin, C. Turnbull, et al. (2004)
Development 131, 3615-3626
   Abstract »    Full Text »    PDF »
A Tobacco Calcium/Calmodulin-binding Protein Kinase Functions as a Negative Regulator of Flowering.
W. Hua, L. Zhang, S. Liang, R. L. Jones, and Y.-T. Lu (2004)
J. Biol. Chem. 279, 31483-31494
   Abstract »    Full Text »    PDF »
DETERMINATE and LATE FLOWERING Are Two TERMINAL FLOWER1/CENTRORADIALIS Homologs That Control Two Distinct Phases of Flowering Initiation and Development in Pea.
F. Foucher, J. Morin, J. Courtiade, S. Cadioux, N. Ellis, M. J. Banfield, and C. Rameau (2003)
PLANT CELL 15, 2742-2754
   Abstract »    Full Text »    PDF »
Rapid Induction of Regulatory and Transporter Genes in Response to Phosphorus, Potassium, and Iron Deficiencies in Tomato Roots. Evidence for Cross Talk and Root/Rhizosphere-Mediated Signals.
Y.-H. Wang, D. F. Garvin, and L. V. Kochian (2002)
Plant Physiology 130, 1361-1370
   Abstract »    Full Text »    PDF »
Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs.
S. R. Hepworth, F. Valverde, D. Ravenscroft, A. Mouradov, and G. Coupland (2002)
EMBO J. 21, 4327-4337
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882