Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Plant Physiology 122 (2): 573-582

Copyright © 2000 by the American Society of Plant Physiologists.

Plant Physiol, February 2000, Vol. 122, pp. 573-582

Nitric Oxide Modulates the Activity of Tobacco Aconitase1

Duroy A. Navarre, David Wendehenne,2 Jörg Durner,3 Robert Noad, and Daniel F. Klessig*

Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020.

Recent evidence suggests an important role for nitric oxide (NO) signaling in plant-pathogen interactions. Additional elucidation of the role of NO in plants will require identification of NO targets. Since aconitases are major NO targets in animals, we examined the effect of NO on tobacco (Nicotiana tabacum) aconitase. The tobacco aconitases, like their animal counterparts, were inhibited by NO donors. The cytosolic aconitase in animals, in addition to being a key redox and NO sensor, is converted by NO into an mRNA binding protein (IRP, or iron-regulatory protein) that regulates iron homeostasis. A tobacco cytosolic aconitase gene (NtACO1) whose deduced amino acid sequence shared 61% identity and 76% similarity with the human IRP-1 was cloned. Furthermore, residues involved in mRNA binding by IRP-1 were conserved in NtACO1. These results reveal additional similarities between the NO signaling mechanisms used by plants and animals.


1 This work was supported by the National Science Foundation (grant nos. MCB 9723952 and MCB 9514239).

2 Present address: Unité associée Institut National de la Recherche Agronomique/Université de Bourgogne, Institut National de la Recherche Agronomique AV 1540, 21034 Dijon cedex, France.

3 Present address: Institute of Biochemical Plant Pathology, GSF-National Research Center for Environment & Health, D-85764, Oberschleissheim, Germany.

* Corresponding author; e-mail klessig{at}waksman.rutgers.edu; fax 732-445-5735.

© 2000 American Society of Plant Physiologists

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids.
K. J. Gupta, J. K. Shah, Y. Brotman, K. Jahnke, L. Willmitzer, W. M. Kaiser, H. Bauwe, and A. U. Igamberdiev (2012)
J. Exp. Bot. 63, 1773-1784
   Abstract »    Full Text »    PDF »
Nitric oxide and frataxin: two players contributing to maintain cellular iron homeostasis.
L. Ramirez, E. J. Zabaleta, and L. Lamattina (2010)
Ann. Bot. 105, 801-810
   Abstract »    Full Text »    PDF »
New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants.
J.-F. Briat, K. Ravet, N. Arnaud, C. Duc, J. Boucherez, B. Touraine, F. Cellier, and F. Gaymard (2010)
Ann. Bot. 105, 811-822
   Abstract »    Full Text »    PDF »
An Iron-induced Nitric Oxide Burst Precedes Ubiquitin-dependent Protein Degradation for Arabidopsis AtFer1 Ferritin Gene Expression.
N. Arnaud, I. Murgia, J. Boucherez, J.-F. Briat, F. Cellier, and F. Gaymard (2006)
J. Biol. Chem. 281, 23579-23588
   Abstract »    Full Text »    PDF »
Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco.
E. Zago, S. Morsa, J. F. Dat, P. Alard, A. Ferrarini, D. Inze, M. Delledonne, and F. Van Breusegem (2006)
Plant Physiology 141, 404-411
   Abstract »    Full Text »    PDF »
NO way to live; the various roles of nitric oxide in plant-pathogen interactions.
L. A. J. Mur, T. L. W. Carver, and E. Prats (2006)
J. Exp. Bot. 57, 489-505
   Abstract »    Full Text »    PDF »
The Haemoglobin/Nitric Oxide Cycle: Involvement in Flooding Stress and Effects on Hormone Signalling.
A. U. IGAMBERDIEV, K. BARON, N. MANAC'H-LITTLE, M. STOIMENOVA, and R. D. HILL (2005)
Ann. Bot. 96, 557-564
   Abstract »    Full Text »    PDF »
Proteomic Identification of S-Nitrosylated Proteins in Arabidopsis.
C. Lindermayr, G. Saalbach, and J. Durner (2005)
Plant Physiology 137, 921-930
   Abstract »    Full Text »    PDF »
Cellular and Subcellular Localization of Endogenous Nitric Oxide in Young and Senescent Pea Plants.
F. J. Corpas, J. B. Barroso, A. Carreras, M. Quiros, A. M. Leon, M. C. Romero-Puertas, F. J. Esteban, R. Valderrama, J. M. Palma, L. M. Sandalio, et al. (2004)
Plant Physiology 136, 2722-2733
   Abstract »    Full Text »    PDF »
New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii.
S. D. Lemaire, B. Guillon, P. Le Marechal, E. Keryer, M. Miginiac-Maslow, and P. Decottignies (2004)
PNAS 101, 7475-7480
   Abstract »    Full Text »    PDF »
Cytosolic Aconitase and Ferritin Are Regulated by Iron in Caenorhabditis elegans.
B. L. Gourley, S. B. Parker, B. J. Jones, K. B. Zumbrennen, and E. A. Leibold (2003)
J. Biol. Chem. 278, 3227-3234
   Abstract »    Full Text »    PDF »
Generation and possible roles of NO in plant roots and their apoplastic space.
C. Stohr and W. R. Ullrich (2002)
J. Exp. Bot. 53, 2293-2303
   Abstract »    Full Text »    PDF »
Hydrogen peroxide and nitric oxide as signalling molecules in plants.
S. J. Neill, R. Desikan, A. Clarke, R. D. Hurst, and J. T. Hancock (2002)
J. Exp. Bot. 53, 1237-1247
   Abstract »    Full Text »    PDF »
Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.
M. Delledonne, J. Zeier, A. Marocco, and C. Lamb (2001)
PNAS 98, 13454-13459
   Abstract »    Full Text »    PDF »
Nitric oxide and salicylic acid signaling in plant defense.
D. F. Klessig, J. Durner, R. Noad, D. A. Navarre, D. Wendehenne, D. Kumar, J. M. Zhou, J. Shah, S. Zhang, P. Kachroo, et al. (2000)
PNAS 97, 8849-8855
   Abstract »    Full Text »    PDF »
Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.
M. Delledonne, J. Zeier, A. Marocco, and C. Lamb (2001)
PNAS 98, 13454-13459
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882