Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Plant Physiology 126 (2): 524-535

Copyright © 2001 by the American Society of Plant Physiologists.

Plant Physiol, June 2001, Vol. 126, pp. 524-535

Flavonoids Act as Negative Regulators of Auxin Transport in Vivo in Arabidopsis1

Dana E. Brown, Aaron M. Rashotte, Angus S. Murphy,2 Jennifer Normanly, Brian W. Tague, Wendy A. Peer,2 Lincoln Taiz, and Gloria K. Muday*

Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109 (D.E.B., A.M.R., B.W.T., G.K.M.); Biology Department, University of California, Santa Cruz, California 95064 (A.S.M., W.A.P., L.T.); and Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003 (J.N.)

Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.

1 This work was supported by Sigma Xi (grant to D.E.B.), by the National Aeronautical and Space Administration (grant no. NAG2 1203 to G.K.M.), by the National Aeronautical and Space Administration Specialized Center for Research and Training at North Carolina State University (grants to G.K.M. and A.M.R.), by the U.S. Department of Agriculture (grant no. 94-37100-0755 to A.S.M. and L.T.), and by the National Science Foundation (grant no. MCB-9870798 to J.N.). The Wake Forest University Research and Publications Fund supported the publication costs.

2 Present address: Department of Horticulture and Landscape Architecture, 1165 Horticulture Building, Purdue University, West Lafayette, IN 47907-1165.

* Corresponding author; e-mail muday{at}; fax 336-758-6008.

© 2001 American Society of Plant Physiologists

Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B.
R. Fasano, N. Gonzalez, A. Tosco, F. Dal Piaz, T. Docimo, R. Serrano, S. Grillo, A. Leone, and D. Inze (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
Auxin and the integration of environmental signals into plant root development.
K. Kazan (2013)
Ann. Bot. 112, 1655-1665
   Abstract »    Full Text »    PDF »
Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport.
A. S. Mialoundama, N. Jadid, J. Brunel, T. Di Pascoli, D. Heintz, M. Erhardt, J. Mutterer, M. Bergdoll, D. Ayoub, A. Van Dorsselaer, et al. (2013)
PLANT CELL 25, 4879-4893
   Abstract »    Full Text »    PDF »
Evidence of oxidative attenuation of auxin signalling.
W. A. Peer, Y. Cheng, and A. S. Murphy (2013)
J. Exp. Bot. 64, 2629-2639
   Abstract »    Full Text »    PDF »
Cytochrome P450 CYP78A9 Is Involved in Arabidopsis Reproductive Development.
M. Sotelo-Silveira, M. Cucinotta, A.-L. Chauvin, R. A. Chavez Montes, L. Colombo, N. Marsch-Martinez, and S. de Folter (2013)
Plant Physiology 162, 779-799
   Abstract »    Full Text »    PDF »
A Genetic and Metabolic Analysis Revealed that Cotton Fiber Cell Development Was Retarded by Flavonoid Naringenin.
J. Tan, L. Tu, F. Deng, H. Hu, Y. Nie, and X. Zhang (2013)
Plant Physiology 162, 86-95
   Abstract »    Full Text »    PDF »
GRAVITY PERSISTENT SIGNAL 1 (GPS1) Reveals Novel Cytochrome P450s Involved in Gravitropism.
J. C. Withers, M. J. Shipp, S. G. Rupasinghe, P. Sukumar, M. A. Schuler, G. K. Muday, and S. E. Wyatt (2013)
Am. J. Botany 100, 183-193
   Abstract »    Full Text »    PDF »
Action of Gibberellins on Growth and Metabolism of Arabidopsis Plants Associated with High Concentration of Carbon Dioxide.
D. M. Ribeiro, W. L. Araujo, A. R. Fernie, J. H. M. Schippers, and B. Mueller-Roeber (2012)
Plant Physiology 160, 1781-1794
   Abstract »    Full Text »    PDF »
Lessons from flower colour evolution on targets of selection.
C. A. Wessinger and M. D. Rausher (2012)
J. Exp. Bot. 63, 5741-5749
   Abstract »    Full Text »    PDF »
Stem Transcriptome Reveals Mechanisms to Reduce the Energetic Cost of Shade-Avoidance Responses in Tomato.
J. I. Cagnola, E. Ploschuk, T. Benech-Arnold, S. A. Finlayson, and J. J. Casal (2012)
Plant Physiology 160, 1110-1119
   Abstract »    Full Text »    PDF »
Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus.
A. Trapero, O. Ahrazem, A. Rubio-Moraga, M. L. Jimeno, M. D. Gomez, and L. Gomez-Gomez (2012)
Plant Physiology 159, 1335-1354
   Abstract »    Full Text »    PDF »
Pleiotropic Phenotypes of the sticky peel Mutant Provide New Insight into the Role of CUTIN DEFICIENT2 in Epidermal Cell Function in Tomato.
S. S. Nadakuduti, M. Pollard, D. K. Kosma, C. Allen Jr., J. B. Ohlrogge, and C. S. Barry (2012)
Plant Physiology 159, 945-960
   Abstract »    Full Text »    PDF »
Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis.
J.-M. Routaboul, C. Dubos, G. Beck, C. Marquis, P. Bidzinski, O. Loudet, and L. Lepiniec (2012)
J. Exp. Bot. 63, 3749-3764
   Abstract »    Full Text »    PDF »
The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions.
S. Hassan and U. Mathesius (2012)
J. Exp. Bot. 63, 3429-3444
   Abstract »    Full Text »    PDF »
Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids.
H. Shen, H. He, J. Li, W. Chen, X. Wang, L. Guo, Z. Peng, G. He, S. Zhong, Y. Qi, et al. (2012)
PLANT CELL 24, 875-892
   Abstract »    Full Text »    PDF »
Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis.
W. Grunewald, I. De Smet, D. R. Lewis, C. Lofke, L. Jansen, G. Goeminne, R. Vanden Bossche, M. Karimi, B. De Rybel, B. Vanholme, et al. (2012)
PNAS 109, 1554-1559
   Abstract »    Full Text »    PDF »
Flavonols: old compounds for old roles.
S. Pollastri and M. Tattini (2011)
Ann. Bot. 108, 1225-1233
   Abstract »    Full Text »    PDF »
Sphingolipids Containing Very-Long-Chain Fatty Acids Define a Secretory Pathway for Specific Polar Plasma Membrane Protein Targeting in Arabidopsis.
J. E. Markham, D. Molino, L. Gissot, Y. Bellec, K. Hematy, J. Marion, K. Belcram, J.-C. Palauqui, B. Satiat-JeuneMaitre, and J.-D. Faure (2011)
PLANT CELL 23, 2362-2378
   Abstract »    Full Text »    PDF »
Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis.
B. M. Kuhn, M. Geisler, L. Bigler, and C. Ringli (2011)
Plant Physiology 156, 585-595
   Abstract »    Full Text »    PDF »
Seven Things We Think We Know about Auxin Transport.
W. A. Peer, J. J. Blakeslee, H. Yang, and A. S. Murphy (2011)
Mol Plant 4, 487-504
   Abstract »    Full Text »    PDF »
Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway.
I. Hichri, F. Barrieu, J. Bogs, C. Kappel, S. Delrot, and V. Lauvergeat (2011)
J. Exp. Bot. 62, 2465-2483
   Abstract »    Full Text »    PDF »
Auxin and Ethylene Induce Flavonol Accumulation through Distinct Transcriptional Networks.
D. R. Lewis, M. V. Ramirez, N. D. Miller, P. Vallabhaneni, W. K. Ray, R. F. Helm, B. S. J. Winkel, and G. K. Muday (2011)
Plant Physiology 156, 144-164
   Abstract »    Full Text »    PDF »
Transient Proliferation of Proanthocyanidin-Accumulating Cells on the Epidermal Apex Contributes to Highly Aluminum-Resistant Root Elongation in Camphor Tree.
H. Osawa, I. Endo, Y. Hara, Y. Matsushima, and T. Tange (2011)
Plant Physiology 155, 433-446
   Abstract »    Full Text »    PDF »
The Compact Root Architecture1 Gene Regulates Lignification, Flavonoid Production, and Polar Auxin Transport in Medicago truncatula.
C. Laffont, S. Blanchet, C. Lapierre, L. Brocard, P. Ratet, M. Crespi, U. Mathesius, and F. Frugier (2010)
Plant Physiology 153, 1597-1607
   Abstract »    Full Text »    PDF »
The Growth Reduction Associated with Repressed Lignin Biosynthesis in Arabidopsis thaliana Is Independent of Flavonoids.
X. Li, N. D. Bonawitz, J.-K. Weng, and C. Chapple (2010)
PLANT CELL 22, 1620-1632
   Abstract »    Full Text »    PDF »
Arabidopsis Auxin Mutants Are Compromised in Systemic Acquired Resistance and Exhibit Aberrant Accumulation of Various Indolic Compounds.
W. M. Truman, M. H. Bennett, C. G. N. Turnbull, and M. R. Grant (2010)
Plant Physiology 152, 1562-1573
   Abstract »    Full Text »    PDF »
SAUR39, a Small Auxin-Up RNA Gene, Acts as a Negative Regulator of Auxin Synthesis and Transport in Rice.
S. Kant, Y.-M. Bi, T. Zhu, and S. J. Rothstein (2009)
Plant Physiology 151, 691-701
   Abstract »    Full Text »    PDF »
Manipulation of Auxin Transport in Plant Roots during Rhizobium Symbiosis and Nematode Parasitism.
W. Grunewald, G. van Noorden, G. Van Isterdael, T. Beeckman, G. Gheysen, and U. Mathesius (2009)
PLANT CELL 21, 2553-2562
   Abstract »    Full Text »    PDF »
Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis.
Z. Chen, S. Noir, M. Kwaaitaal, H. A. Hartmann, M.-J. Wu, Y. Mudgil, P. Sukumar, G. Muday, R. Panstruga, and A. M. Jones (2009)
PLANT CELL 21, 1972-1991
   Abstract »    Full Text »    PDF »
Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation.
J. Sun, Y. Xu, S. Ye, H. Jiang, Q. Chen, F. Liu, W. Zhou, R. Chen, X. Li, O. Tietz, et al. (2009)
PLANT CELL 21, 1495-1511
   Abstract »    Full Text »    PDF »
Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana.
C. S. Buer and M. A. Djordjevic (2009)
J. Exp. Bot. 60, 751-763
   Abstract »    Full Text »    PDF »
Flavonoids Redirect PIN-mediated Polar Auxin Fluxes during Root Gravitropic Responses.
D. Santelia, S. Henrichs, V. Vincenzetti, M. Sauer, L. Bigler, M. Klein, A. Bailly, Y. Lee, J. Friml, M. Geisler, et al. (2008)
J. Biol. Chem. 283, 31218-31226
   Abstract »    Full Text »    PDF »
Modulation of P-glycoproteins by Auxin Transport Inhibitors Is Mediated by Interaction with Immunophilins.
A. Bailly, V. Sovero, V. Vincenzetti, D. Santelia, D. Bartnik, B. W. Koenig, S. Mancuso, E. Martinoia, and M. Geisler (2008)
J. Biol. Chem. 283, 21817-21826
   Abstract »    Full Text »    PDF »
Metabolome Analysis of Biosynthetic Mutants Reveals a Diversity of Metabolic Changes and Allows Identification of a Large Number of New Compounds in Arabidopsis.
C. Bottcher, E. von Roepenack-Lahaye, J. Schmidt, C. Schmotz, S. Neumann, D. Scheel, and S. Clemens (2008)
Plant Physiology 147, 2107-2120
   Abstract »    Full Text »    PDF »
Functional Analysis of a Predicted Flavonol Synthase Gene Family in Arabidopsis.
D. K. Owens, A. B. Alerding, K. C. Crosby, A. B. Bandara, J. H. Westwood, and B. S.J. Winkel (2008)
Plant Physiology 147, 1046-1061
   Abstract »    Full Text »    PDF »
The Modified Flavonol Glycosylation Profile in the Arabidopsis rol1 Mutants Results in Alterations in Plant Growth and Cell Shape Formation.
C. Ringli, L. Bigler, B. M. Kuhn, R.-M. Leiber, A. Diet, D. Santelia, B. Frey, S. Pollmann, and M. Klein (2008)
PLANT CELL 20, 1470-1481
   Abstract »    Full Text »    PDF »
Barren inflorescence1 Functions in Organogenesis During Vegetative and Inflorescence Development in Maize.
S. Barazesh and P. McSteen (2008)
Genetics 179, 389-401
   Abstract »    Full Text »    PDF »
The molecular analysis of the shade avoidance syndrome in the grasses has begun.
T. H. Kebrom and T. P. Brutnell (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Flavonoids Are Differentially Taken Up and Transported Long Distances in Arabidopsis.
C. S. Buer, G. K. Muday, and M. A. Djordjevic (2007)
Plant Physiology 145, 478-490
   Abstract »    Full Text »    PDF »
Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca.
B. Peret, R. Swarup, L. Jansen, G. Devos, F. Auguy, M. Collin, C. Santi, V. Hocher, C. Franche, D. Bogusz, et al. (2007)
Plant Physiology 144, 1852-1862
   Abstract »    Full Text »    PDF »
MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis.
B. Dombrecht, G. P. Xue, S. J. Sprague, J. A. Kirkegaard, J. J. Ross, J. B. Reid, G. P. Fitt, N. Sewelam, P. M. Schenk, J. M. Manners, et al. (2007)
PLANT CELL 19, 2225-2245
   Abstract »    Full Text »    PDF »
RNA Interference Silencing of Chalcone Synthase, the First Step in the Flavonoid Biosynthesis Pathway, Leads to Parthenocarpic Tomato Fruits.
E. G.W.M. Schijlen, C.H. R. de Vos, S. Martens, H. H. Jonker, F. M. Rosin, J. W. Molthoff, Y. M. Tikunov, G. C. Angenent, A. J. van Tunen, and A. G. Bovy (2007)
Plant Physiology 144, 1520-1530
   Abstract »    Full Text »    PDF »
Separating the Roles of Acropetal and Basipetal Auxin Transport on Gravitropism with Mutations in Two Arabidopsis Multidrug Resistance-Like ABC Transporter Genes.
D. R. Lewis, N. D. Miller, B. L. Splitt, G. Wu, and E. P. Spalding (2007)
PLANT CELL 19, 1838-1850
   Abstract »    Full Text »    PDF »
Overlap of Proteome Changes in Medicago truncatula in Response to Auxin and Sinorhizobium meliloti.
G. E. van Noorden, T. Kerim, N. Goffard, R. Wiblin, F. I. Pellerone, B. G. Rolfe, and U. Mathesius (2007)
Plant Physiology 144, 1115-1131
   Abstract »    Full Text »    PDF »
Differential Effects of Sucrose and Auxin on Localized Phosphate Deficiency-Induced Modulation of Different Traits of Root System Architecture in Arabidopsis.
A. Jain, M. D. Poling, A. S. Karthikeyan, J. J. Blakeslee, W. A. Peer, B. Titapiwatanakun, A. S. Murphy, and K. G. Raghothama (2007)
Plant Physiology 144, 232-247
   Abstract »    Full Text »    PDF »
Flavonoid Biosynthesis in Barley Primary Leaves Requires the Presence of the Vacuole and Controls the Activity of Vacuolar Flavonoid Transport.
K. Marinova, K. Kleinschmidt, G. Weissenbock, and M. Klein (2007)
Plant Physiology 144, 432-444
   Abstract »    Full Text »    PDF »
Gene Expression Profiling Reveals Defined Functions of the ATP-Binding Cassette Transporter COMATOSE Late in Phase II of Germination.
E. Carrera, T. Holman, A. Medhurst, W. Peer, H. Schmuths, S. Footitt, F. L. Theodoulou, and M. J. Holdsworth (2007)
Plant Physiology 143, 1669-1679
   Abstract »    Full Text »    PDF »
Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro.
K. Niemi, R. Julkunen-Tiitto, H. Haggman, and T. Sarjala (2007)
J. Exp. Bot. 58, 391-401
   Abstract »    Full Text »    PDF »
Flavonoid Accumulation in Arabidopsis Repressed in Lignin Synthesis Affects Auxin Transport and Plant Growth.
S. Besseau, L. Hoffmann, P. Geoffroy, C. Lapierre, B. Pollet, and M. Legrand (2007)
PLANT CELL 19, 148-162
   Abstract »    Full Text »    PDF »
Hormonal and Stress Induction of the Gene Encoding Common Bean Acetyl-Coenzyme A Carboxylase.
R. E. Figueroa-Balderas, B. Garcia-Ponce, and M. Rocha-Sosa (2006)
Plant Physiology 142, 609-619
   Abstract »    Full Text »    PDF »
The Ethylene-Insensitive sickle Mutant of Medicago truncatula Shows Altered Auxin Transport Regulation during Nodulation.
J. Prayitno, B. G. Rolfe, and U. Mathesius (2006)
Plant Physiology 142, 168-180
   Abstract »    Full Text »    PDF »
RCN1-Regulated Phosphatase Activity and EIN2 Modulate Hypocotyl Gravitropism by a Mechanism That Does Not Require Ethylene Signaling.
G. K. Muday, S. R. Brady, C. Argueso, J. Deruere, J. J. Kieber, and A. DeLong (2006)
Plant Physiology 141, 1617-1629
   Abstract »    Full Text »    PDF »
The Role of Flavonoids in Root Nodule Development and Auxin Transport in Medicago truncatula.
N. A. Eckardt (2006)
PLANT CELL 18, 1539-1540
   Full Text »    PDF »
Silencing the Flavonoid Pathway in Medicago truncatula Inhibits Root Nodule Formation and Prevents Auxin Transport Regulation by Rhizobia.
A. P. Wasson, F. I. Pellerone, and U. Mathesius (2006)
PLANT CELL 18, 1617-1629
   Abstract »    Full Text »    PDF »
Crystal Structure of Prephenate Dehydrogenase from Aquifex aeolicus: INSIGHTS INTO THE CATALYTIC MECHANISM.
W. Sun, S. Singh, R. Zhang, J. L. Turnbull, and D. Christendat (2006)
J. Biol. Chem. 281, 12919-12928
   Abstract »    Full Text »    PDF »
Ethylene Modulates Flavonoid Accumulation and Gravitropic Responses in Roots of Arabidopsis.
C. S. Buer, P. Sukumar, and G. K. Muday (2006)
Plant Physiology 140, 1384-1396
   Abstract »    Full Text »    PDF »
Defective Long-Distance Auxin Transport Regulation in the Medicago truncatula super numeric nodules Mutant.
G. E. van Noorden, J. J. Ross, J. B. Reid, B. G. Rolfe, and U. Mathesius (2006)
Plant Physiology 140, 1494-1506
   Abstract »    Full Text »    PDF »
Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis.
Y. Dai, H. Wang, B. Li, J. Huang, X. Liu, Y. Zhou, Z. Mou, and J. Li (2006)
PLANT CELL 18, 308-320
   Abstract »    Full Text »    PDF »
From The Cover: MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis.
G. Lazar and H. M. Goodman (2006)
PNAS 103, 472-476
   Abstract »    Full Text »    PDF »
The rib1 Mutant of Arabidopsis Has Alterations in Indole-3-Butyric Acid Transport, Hypocotyl Elongation, and Root Architecture.
J. Poupart, A. M. Rashotte, G. K. Muday, and C. S. Waddell (2005)
Plant Physiology 139, 1460-1471
   Abstract »    Full Text »    PDF »
A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.
J. Misson, K. G. Raghothama, A. Jain, J. Jouhet, M. A. Block, R. Bligny, P. Ortet, A. Creff, S. Somerville, N. Rolland, et al. (2005)
PNAS 102, 11934-11939
   Abstract »    Full Text »    PDF »
CINNAMYL ALCOHOL DEHYDROGENASE-C and -D Are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis.
R. Sibout, A. Eudes, G. Mouille, B. Pollet, C. Lapierre, L. Jouanin, and A. Seguin (2005)
PLANT CELL 17, 2059-2076
   Abstract »    Full Text »    PDF »
Localized Hormone Fluxes and Early Haustorium Development in the Hemiparasitic Plant Triphysaria versicolor.
A. A. Tomilov, N. B. Tomilova, I. Abdallah, and J. I. Yoder (2005)
Plant Physiology 138, 1469-1480
   Abstract »    Full Text »    PDF »
Auxin: Regulation, Action, and Interaction.
A. W. WOODWARD and B. BARTEL (2005)
Ann. Bot. 95, 707-735
   Abstract »    Full Text »    PDF »
Variation in Expression and Protein Localization of the PIN Family of Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin Transport in Arabidopsis thaliana.
W. A. Peer, A. Bandyopadhyay, J. J. Blakeslee, S. N. Makam, R. J. Chen, P. H. Masson, and A. S. Murphy (2004)
PLANT CELL 16, 1898-1911
   Abstract »    Full Text »    PDF »
Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta.
M. Brinker, L. van Zyl, W. Liu, D. Craig, R. R. Sederoff, D. H. Clapham, and S. von Arnold (2004)
Plant Physiology 135, 1526-1539
   Abstract »    Full Text »    PDF »
The transparent testa4 Mutation Prevents Flavonoid Synthesis and Alters Auxin Transport and the Response of Arabidopsis Roots to Gravity and Light.
C. S. Buer and G. K. Muday (2004)
PLANT CELL 16, 1191-1205
   Abstract »    Full Text »    PDF »
Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.).
D. C. Gitz III, L. Liu-Gitz, J. W. McClure, and A. J. Huerta (2004)
J. Exp. Bot. 55, 919-927
   Abstract »    Full Text »    PDF »
Mutations in the pale aleurone color1 Regulatory Gene of the Zea mays Anthocyanin Pathway Have Distinct Phenotypes Relative to the Functionally Similar TRANSPARENT TESTA GLABRA1 Gene in Arabidopsis thaliana.
C. C. Carey, J. T. Strahle, D. A. Selinger, and V. L. Chandler (2004)
PLANT CELL 16, 450-464
   Abstract »    Full Text »    PDF »
Auxin Responsiveness of a Novel Cytochrome P450 in Rice Coleoptiles.
C. Chaban, F. Waller, M. Furuya, and P. Nick (2003)
Plant Physiology 133, 2000-2009
   Abstract »    Full Text »
Altered Life Cycle in Arabidopsis Plants Expressing PsUGT1, a UDP-Glucuronosyltransferase-Encoding Gene from Pea.
H.-H. Woo, K. F. Faull, A. M. Hirsch, and M. C. Hawes (2003)
Plant Physiology 133, 538-548
   Abstract »    Full Text »    PDF »
Transport of the Two Natural Auxins, Indole-3-Butyric Acid and Indole-3-Acetic Acid, in Arabidopsis.
A. M. Rashotte, J. Poupart, C. S. Waddell, and G. K. Muday (2003)
Plant Physiology 133, 761-772
   Abstract »    Full Text »    PDF »
The polycotyledon Mutant of Tomato Shows Enhanced Polar Auxin Transport.
A. S.A. Al-Hammadi, Y. Sreelakshmi, S. Negi, I. Siddiqi, and R. Sharma (2003)
Plant Physiology 133, 113-125
   Abstract »    Full Text »    PDF »
Dual Genetic Pathways Controlling Nodule Number in Medicago truncatula.
R. V. Penmetsa, J. A. Frugoli, L. S. Smith, S. R. Long, and D. R. Cook (2003)
Plant Physiology 131, 998-1008
   Abstract »    Full Text »    PDF »
The Procambium Specification Gene Oshox1 Promotes Polar Auxin Transport Capacity and Reduces Its Sensitivity toward Inhibition.
E. Scarpella, K. J.M. Boot, S. Rueb, and A. H. Meijer (2002)
Plant Physiology 130, 1349-1360
   Abstract »    Full Text »    PDF »
An Emerging Model of Auxin Transport Regulation.
G. K. Muday and A. S. Murphy (2002)
PLANT CELL 14, 293-299
   Full Text »    PDF »
It Takes a Garden. How Work on Diverse Plant Species Has Contributed to an Understanding of Flavonoid Metabolism.
B. Winkel-Shirley (2001)
Plant Physiology 127, 1399-1404
   Full Text »    PDF »
Multidrug Resistance-like Genes of Arabidopsis Required for Auxin Transport and Auxin-Mediated Development.
B. Noh, A. S. Murphy, and E. P. Spalding (2001)
PLANT CELL 13, 2441-2454
   Abstract »    Full Text »    PDF »
Unlocking the mysteries of leaf primordia formation.
R. E. Cleland (2001)
PNAS 98, 10981-10982
   Full Text »    PDF »
Genetic and Chemical Reductions in Protein Phosphatase Activity Alter Auxin Transport, Gravity Response, and Lateral Root Growth.
A. M. Rashotte, A. DeLong, and G. K. Muday (2001)
PLANT CELL 13, 1683-1697
   Abstract »    Full Text »    PDF »
Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology.
B. Winkel-Shirley (2001)
Plant Physiology 126, 485-493
   Full Text »    PDF »
Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis.
W. A. Peer, D. E. Brown, B. W. Tague, G. K. Muday, L. Taiz, and A. S. Murphy (2001)
Plant Physiology 126, 536-548
   Abstract »    Full Text »    PDF »
Identification, Purification, and Molecular Cloning of N-1-Naphthylphthalmic Acid-Binding Plasma Membrane-Associated Aminopeptidases from Arabidopsis.
A. S. Murphy, K. R. Hoogner, W. A. Peer, and L. Taiz (2002)
Plant Physiology 128, 935-950
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882