Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Plant Physiology 126 (2): 549-563

Copyright © 2001 by the American Society of Plant Physiologists.

Plant Physiol, June 2001, Vol. 126, pp. 549-563

Alteration of Auxin Polar Transport in the Arabidopsis ifl1 Mutants1

Ruiqin Zhong and Zheng-Hua Ye*

Department of Botany, University of Georgia, Athens, Georgia 30602

The INTERFASCICULAR FIBERLESS/REVOLUTA (IFL1/REV) gene is essential for the normal differentiation of interfascicular fibers and secondary xylem in the inflorescence stems of Arabidopsis. It has been proposed that IFL1/REV influences auxin polar flow or the transduction of auxin signal, which is required for fiber and vascular differentiation. Assay of auxin polar transport showed that the ifl1 mutations dramatically reduced auxin polar flow along the inflorescence stems and in the hypocotyls. The null mutant allele ifl1-2 was accompanied by a significant decrease in the expression level of two putative auxin efflux carriers. The ifl1 mutants remained sensitive to auxin and an auxin transport inhibitor. The ifl1-2 mutant exhibited visible phenotypes associated with defects in auxin polar transport such as pin-like inflorescence, reduced numbers of cauline branches, reduced numbers of secondary rosette inflorescence, and dark green leaves with delayed senescence. The visible phenotypes displayed by the ifl1 mutants could be mimicked by treatment of wild-type plants with an auxin polar transport inhibitor. In addition, the auxin polar transport inhibitor altered the normal differentiation of interfascicular fibers in the inflorescence stems of wild-type Arabidopsis. Taken together, these results suggest a correlation between the reduced auxin polar transport and the alteration of cell differentiation and morphology in the ifl1 mutants.

1 This work was supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture.

* Corresponding author; e-mail ye{at}; fax 706-542-1805.

© 2001 American Society of Plant Physiologists

Arabidopsis KANADI1 Acts as a Transcriptional Repressor by Interacting with a Specific cis-Element and Regulates Auxin Biosynthesis, Transport, and Signaling in Opposition to HD-ZIPIII Factors.
T. Huang, Y. Harrar, C. Lin, B. Reinhart, N. R. Newell, F. Talavera-Rauh, S. A. Hokin, M. K. Barton, and R. A. Kerstetter (2014)
PLANT CELL 26, 246-262
   Abstract »    Full Text »    PDF »
Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport.
A. S. Mialoundama, N. Jadid, J. Brunel, T. Di Pascoli, D. Heintz, M. Erhardt, J. Mutterer, M. Bergdoll, D. Ayoub, A. Van Dorsselaer, et al. (2013)
PLANT CELL 25, 4879-4893
   Abstract »    Full Text »    PDF »
Establishing a Framework for the Ad/Abaxial Regulatory Network of Arabidopsis: Ascertaining Targets of Class III HOMEODOMAIN LEUCINE ZIPPER and KANADI Regulation.
B. J. Reinhart, T. Liu, N. R. Newell, E. Magnani, T. Huang, R. Kerstetter, S. Michaels, and M. K. Barton (2013)
PLANT CELL 25, 3228-3249
   Abstract »    Full Text »    PDF »
Xylem tissue specification, patterning, and differentiation mechanisms.
M. Schuetz, R. Smith, and B. Ellis (2013)
J. Exp. Bot. 64, 11-31
   Abstract »    Full Text »    PDF »
Identification of quantitative trait loci controlling fibre length and lignin content in Arabidopsis thaliana stems.
A. Capron, X. F. Chang, H. Hall, B. Ellis, R. P. Beatson, and T. Berleth (2013)
J. Exp. Bot. 64, 185-197
   Abstract »    Full Text »    PDF »
On-Off Switches for Secondary Cell Wall Biosynthesis.
H.-Z. Wang and R. A. Dixon (2012)
Mol Plant 5, 297-303
   Abstract »    Full Text »    PDF »
The Populus Class III HD ZIP, popREVOLUTA, Influences Cambium Initiation and Patterning of Woody Stems.
M. Robischon, J. Du, E. Miura, and A. Groover (2011)
Plant Physiology 155, 1214-1225
   Abstract »    Full Text »    PDF »
Convergence of the 26S proteasome and the REVOLUTA pathways in regulating inflorescence and floral meristem functions in Arabidopsis.
Z. Zhang, H. Wang, D. Luo, M. Zeng, H. Huang, and X. Cui (2011)
J. Exp. Bot. 62, 359-369
   Abstract »    Full Text »    PDF »
Strigolactones are positive regulators of light-harvesting genes in tomato.
E. Mayzlish-Gati, S. P. LekKala, N. Resnick, S. Wininger, C. Bhattacharya, J. H. Lemcoff, Y. Kapulnik, and H. Koltai (2010)
J. Exp. Bot. 61, 3129-3136
   Abstract »    Full Text »    PDF »
Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.
M. Ilegems, V. Douet, M. Meylan-Bettex, M. Uyttewaal, L. Brand, J. L. Bowman, and P. A. Stieger (2010)
Development 137, 975-984
   Abstract »    Full Text »    PDF »
A Combinatorial Interplay Among the 1-Aminocyclopropane-1-Carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana.
A. Tsuchisaka, G. Yu, H. Jin, J. M. Alonso, J. R. Ecker, X. Zhang, S. Gao, and A. Theologis (2009)
Genetics 183, 979-1003
   Abstract »    Full Text »    PDF »
Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice.
J.-I. Itoh, K.-I. Hibara, Y. Sato, and Y. Nagato (2008)
Plant Physiology 147, 1960-1975
   Abstract »    Full Text »    PDF »
Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana.
Z. Liu, J. Duguay, F. Ma, T.-W. Wang, R. Tshin, M. T. Hopkins, L. McNamara, and J. E. Thompson (2008)
J. Exp. Bot. 59, 939-950
   Abstract »    Full Text »    PDF »
From primary to secondary growth: origin and development of the vascular system.
M. Baucher, M. El Jaziri, and O. Vandeputte (2007)
J. Exp. Bot. 58, 3485-3501
   Abstract »    Full Text »    PDF »
Overexpression of miR165 Affects Apical Meristem Formation, Organ Polarity Establishment and Vascular Development in Arabidopsis.
G.-K. Zhou, M. Kubo, R. Zhong, T. Demura, and Z.-H. Ye (2007)
Plant Cell Physiol. 48, 391-404
   Abstract »    Full Text »    PDF »
Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds.
J. A. Aguilar-Martinez, C. Poza-Carrion, and P. Cubas (2007)
PLANT CELL 19, 458-472
   Abstract »    Full Text »    PDF »
NAC Transcription Factors, NST1 and NST3, Are Key Regulators of the Formation of Secondary Walls in Woody Tissues of Arabidopsis.
N. Mitsuda, A. Iwase, H. Yamamoto, M. Yoshida, M. Seki, K. Shinozaki, and M. Ohme-Takagi (2007)
PLANT CELL 19, 270-280
   Abstract »    Full Text »    PDF »
Reduction of Benzenoid Synthesis in Petunia Flowers Reveals Multiple Pathways to Benzoic Acid and Enhancement in Auxin Transport.
I. Orlova, A. Marshall-Colon, J. Schnepp, B. Wood, M. Varbanova, E. Fridman, J. J. Blakeslee, W. A. Peer, A. S. Murphy, D. Rhodes, et al. (2006)
PLANT CELL 18, 3458-3475
   Abstract »    Full Text »    PDF »
Evolution of Class III Homeodomain-Leucine Zipper Genes in Streptophytes.
S. K. Floyd, C. S. Zalewski, and J. L. Bowman (2006)
Genetics 173, 373-388
   Abstract »    Full Text »    PDF »
Evidence of polar auxin flow in 375 million-year-old fossil wood.
G. W. Rothwell and S. Lev-Yadun (2005)
Am. J. Botany 92, 903-906
   Abstract »    Full Text »    PDF »
CORONA, a Member of the Class III Homeodomain Leucine Zipper Gene Family in Arabidopsis, Regulates Stem Cell Specification and Organogenesis.
K. A. Green, M. J. Prigge, R. B. Katzman, and S. E. Clark (2005)
PLANT CELL 17, 691-704
   Abstract »    Full Text »    PDF »
Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Development.
M. J. Prigge, D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drews, and S. E. Clark (2005)
PLANT CELL 17, 61-76
   Abstract »    Full Text »    PDF »
MicroRNA-Directed Cleavage of Nicotiana sylvestris PHAVOLUTA mRNA Regulates the Vascular Cambium and Structure of Apical Meristems.
N. A. McHale and R. E. Koning (2004)
PLANT CELL 16, 1730-1740
   Abstract »    Full Text »    PDF »
A Weed for Wood? Arabidopsis as a Genetic Model for Xylem Development.
K. M. Nieminen, L. Kauppinen, and Y. Helariutta (2004)
Plant Physiology 135, 653-659
   Full Text »    PDF »
Plant Body Weight-Induced Secondary Growth in Arabidopsis and Its Transcription Phenotype Revealed by Whole-Transcriptome Profiling.
J.-H. Ko, K.-H. Han, S. Park, and J. Yang (2004)
Plant Physiology 135, 1069-1083
   Abstract »    Full Text »    PDF »
amphivasal vascular bundle 1, a Gain-of-Function Mutation of the IFL1/REV Gene, Is Associated with Alterations in the Polarity of Leaves, Stems and Carpels.
R. Zhong and Z.-H. Ye (2004)
Plant Cell Physiol. 45, 369-385
   Abstract »    Full Text »    PDF »
The VTI Family of SNARE Proteins Is Necessary for Plant Viability and Mediates Different Protein Transport Pathways.
M. Surpin, H. Zheng, M. T. Morita, C. Saito, E. Avila, J. J. Blakeslee, A. Bandyopadhyay, V. Kovaleva, D. Carter, A. Murphy, et al. (2003)
PLANT CELL 15, 2885-2899
   Abstract »    Full Text »    PDF »
The FORKED genes are essential for distal vein meeting in Arabidopsis.
Q. J. Steynen and E. A. Schultz (2003)
Development 130, 4695-4708
   Abstract »    Full Text »    PDF »
The Arabidopsis Auxin-Inducible Gene ARGOS Controls Lateral Organ Size.
Y. Hu, Q. Xie, and N.-H. Chua (2003)
PLANT CELL 15, 1951-1961
   Abstract »    Full Text »    PDF »
The polycotyledon Mutant of Tomato Shows Enhanced Polar Auxin Transport.
A. S.A. Al-Hammadi, Y. Sreelakshmi, S. Negi, I. Siddiqi, and R. Sharma (2003)
Plant Physiology 133, 113-125
   Abstract »    Full Text »    PDF »
Auxin Signaling in Arabidopsis Leaf Vascular Development.
J. Mattsson, W. Ckurshumova, and T. Berleth (2003)
Plant Physiology 131, 1327-1339
   Abstract »    Full Text »    PDF »
The RADICLELESS1 gene is required for vascular pattern formation in rice.
E. Scarpella, S. Rueb, and A. H. Meijer (2003)
Development 130, 645-658
   Abstract »    Full Text »    PDF »
The Procambium Specification Gene Oshox1 Promotes Polar Auxin Transport Capacity and Reduces Its Sensitivity toward Inhibition.
E. Scarpella, K. J.M. Boot, S. Rueb, and A. H. Meijer (2002)
Plant Physiology 130, 1349-1360
   Abstract »    Full Text »    PDF »
Fibers. A Model for Studying Cell Differentiation, Cell Elongation, and Cell Wall Biosynthesis.
R. Zhong, D. H. Burk, and Z.-H. Ye (2001)
Plant Physiology 126, 477-479
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882