Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Plant Physiology 128 (2): 463-471

Copyright © 2002 by the American Society of Plant Physiologists.

Plant Physiol, February 2002, Vol. 128, pp. 463-471

Oxygen Deficiency Responsive Gene Expression in Chlamydomonas reinhardtii through a Copper-Sensing Signal Transduction Pathway1

Jeanette M. Quinn, Mats Eriksson,2 Jeffrey L. Moseley, and Sabeeha Merchant*

Department of Chemistry and Biochemistry (J.M.Q., M.E., J.L.M., S.M.) and Molecular Biology Institute (J.M., S.M.), University of California, Los Angeles, California 90095-1569

Chlamydomonas reinhardtii activates Cpx1, Cyc6, and Crd1, encoding, respectively, coproporphyrinogen oxidase, cytochrome c6, and a novel di-iron enzyme when transferred to oxygen-deficient growth conditions. This response is physiologically relevant because C. reinhardtii experiences these growth conditions routinely, and furthermore, one of the target genes, Crd1, is functionally required for normal growth under oxygen-depleted conditions. The same genes are activated also in response to copper-deficiency through copper-response elements that function as target sites for a transcriptional activator. The core of the copper-response element, GTAC, is required also for the hypoxic response, as is a trans-acting locus, CRR1. Mercuric ions, which antagonize the copper-deficiency response, also antagonize the oxygen-deficiency response of these target genes. Taken together, these observations suggest that the oxygen- and copper-deficiency responses share signal transduction components. Nevertheless, whereas the copper-response element is sufficient for the nutritional copper response, the oxygen-deficiency response requires, in addition, a second cis-element, indicating that the response to oxygen depletion is not identical to the nutritional copper response. The distinction between the two responses is also supported by comparative analysis of the response of the target genes, Cyc6, Cpx1, and Crd1, to copper versus oxygen deficiency. A Crr1-independent pathway for Hyd1 expression in oxygen-depleted C. reinhardtii demonstrates the existence of multiple oxygen/redox-responsive circuits in this model organism.


1 This work was supported by the National Institutes of Health (grant no. GM42143). M.E. was supported, in part, by a European Molecular Biology Organization Long-Term Fellowship, and J.L.M., was supported, in part, by the Molecular Biology Ph.D. program and a Dissertation Year Fellowship from the Graduate Division of the University of California (Los Angeles).

2 Present address: Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden.

* Corresponding author; e-mail merchant{at}chem.ucla.edu; fax 310-206-1035.

© 2002 American Society of Plant Physiologists


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
COPPER RESPONSE REGULATOR1-Dependent and -Independent Responses of the Chlamydomonas reinhardtii Transcriptome to Dark Anoxia.
A. Hemschemeier, D. Casero, B. Liu, C. Benning, M. Pellegrini, T. Happe, and S. S. Merchant (2013)
PLANT CELL 25, 3186-3211
   Abstract »    Full Text »    PDF »
Differential Expression of the Chlamydomonas [FeFe]-Hydrogenase-Encoding HYDA1 Gene Is Regulated by the COPPER RESPONSE REGULATOR1.
M. Pape, C. Lambertz, T. Happe, and A. Hemschemeier (2012)
Plant Physiology 159, 1700-1712
   Abstract »    Full Text »    PDF »
Cytosolic Ni(II) Sensor in Cyanobacterium: NICKEL DETECTION FOLLOWS NICKEL AFFINITY ACROSS FOUR FAMILIES OF METAL SENSORS.
A. W. Foster, C. J. Patterson, R. Pernil, C. R. Hess, and N. J. Robinson (2012)
J. Biol. Chem. 287, 12142-12151
   Abstract »    Full Text »    PDF »
Systems Biology Approach in Chlamydomonas Reveals Connections between Copper Nutrition and Multiple Metabolic Steps.
M. Castruita, D. Casero, S. J. Karpowicz, J. Kropat, A. Vieler, S. I. Hsieh, W. Yan, S. Cokus, J. A. Loo, C. Benning, et al. (2011)
PLANT CELL 23, 1273-1292
   Abstract »    Full Text »    PDF »
The CRR1 Nutritional Copper Sensor in Chlamydomonas Contains Two Distinct Metal-Responsive Domains.
F. Sommer, J. Kropat, D. Malasarn, N. E. Grossoehme, X. Chen, D. P. Giedroc, and S. S. Merchant (2010)
PLANT CELL 22, 4098-4113
   Abstract »    Full Text »    PDF »
Anaerobic Expression of the Ferredoxin-Encoding FDX5 Gene of Chlamydomonas reinhardtii Is Regulated by the Crr1 Transcription Factor.
C. Lambertz, A. Hemschemeier, and T. Happe (2010)
Eukaryot. Cell 9, 1747-1754
   Abstract »    Full Text »    PDF »
Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics.
M. Terashima, M. Specht, B. Naumann, and M. Hippler (2010)
Mol. Cell. Proteomics 9, 1514-1532
   Abstract »    Full Text »    PDF »
Pattern of Expression and Substrate Specificity of Chloroplast Ferredoxins from Chlamydomonas reinhardtii.
A. M. Terauchi, S.-F. Lu, M. Zaffagnini, S. Tappa, M. Hirasawa, J. N. Tripathy, D. B. Knaff, P. J. Farmer, S. D. Lemaire, T. Hase, et al. (2009)
J. Biol. Chem. 284, 25867-25878
   Abstract »    Full Text »    PDF »
Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity.
A. Dubini, F. Mus, M. Seibert, A. R. Grossman, and M. C. Posewitz (2009)
J. Biol. Chem. 284, 7201-7213
   Abstract »    Full Text »    PDF »
Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation.
M. D. Page, J. Kropat, P. P. Hamel, and S. S. Merchant (2009)
PLANT CELL 21, 928-943
   Abstract »    Full Text »    PDF »
Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas.
R. Surzycki, L. Cournac, G. Peltier, and J.-D. Rochaix (2007)
PNAS 104, 17548-17553
   Abstract »    Full Text »    PDF »
Anaerobic Acclimation in Chlamydomonas reinhardtii: ANOXIC GENE EXPRESSION, HYDROGENASE INDUCTION, AND METABOLIC PATHWAYS.
F. Mus, A. Dubini, M. Seibert, M. C. Posewitz, and A. R. Grossman (2007)
J. Biol. Chem. 282, 25475-25486
   Abstract »    Full Text »    PDF »
Global Regulation of Photosynthesis and Respiration by FnrL: THE FIRST TWO TARGETS IN THE TETRAPYRROLE PATHWAY.
S. Ouchane, M. Picaud, P. Therizols, F. Reiss-Husson, and C. Astier (2007)
J. Biol. Chem. 282, 7690-7699
   Abstract »    Full Text »    PDF »
A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element.
J. Kropat, S. Tottey, R. P. Birkenbihl, N. Depege, P. Huijser, and S. Merchant (2005)
PNAS 102, 18730-18735
   Abstract »    Full Text »    PDF »
Sensing and Signalling in Response to Oxygen Deprivation in Plants and Other Organisms.
J. BAILEY-SERRES and R. CHANG (2005)
Ann. Bot. 96, 507-518
   Abstract »    Full Text »    PDF »
Genetic Dissection of Nutritional Copper Signaling in Chlamydomonas Distinguishes Regulatory and Target Genes.
M. Eriksson, J. L. Moseley, S. Tottey, J. A. del Campo, J. Quinn, Y. Kim, and S. Merchant (2004)
Genetics 168, 795-807
   Abstract »    Full Text »    PDF »
Aerobic and Anaerobic Mg-Protoporphyrin Monomethyl Ester Cyclases in Purple Bacteria: A STRATEGY ADOPTED TO BYPASS THE REPRESSIVE OXYGEN CONTROL SYSTEM.
S. Ouchane, A.-S. Steunou, M. Picaud, and C. Astier (2004)
J. Biol. Chem. 279, 6385-6394
   Abstract »    Full Text »    PDF »
Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure.
A.-L. Paul, A. C. Schuerger, M. P. Popp, J. T. Richards, M. S. Manak, and R. J. Ferl (2004)
Plant Physiology 134, 215-223
   Abstract »    Full Text »    PDF »
Copper Response Element and Crr1-Dependent Ni2+-Responsive Promoter for Induced, Reversible Gene Expression in Chlamydomonas reinhardtii.
J. M. Quinn, J. Kropat, and S. Merchant (2003)
Eukaryot. Cell 2, 995-1002
   Abstract »    Full Text »    PDF »
Reciprocal Expression of Two Candidate Di-Iron Enzymes Affecting Photosystem I and Light-Harvesting Complex Accumulation.
J. L. Moseley, M. D. Page, N. P. Alder, M. Eriksson, J. Quinn, F. Soto, S. M. Theg, M. Hippler, and S. Merchant (2002)
PLANT CELL 14, 673-688
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882