Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 96 (21): 11776-11781

Copyright © 1999 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / BIOCHEMISTRY

Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3

Chao-Zhong Song*, Xin Tian*, and Thomas D. Gelehrter*,{dagger},{ddagger}

Departments of *Human Genetics and {dagger}Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0618

Accepted for publication August 10, 1999.

Received for publication April 30, 1999.

Abstract: The transforming growth factor-β (TGF-β) family of cytokines and glucocorticoids regulate diverse biological processes through modulating the expression of target genes. Here we report that glucocorticoid receptor (GR) represses TGF-β transcriptional activation of the type-1 plasminogen activator inhibitor (PAI-1) gene in a ligand-dependent manner. Similarly, GR represses TGF-β activation of the TGF-β responsive sequence containing Smad3/4-binding sites. Using mammalian two-hybrid assays, we demonstrate that GR inhibits transcriptional activation by both Smad3 and Smad4 C-terminal activation domains. Finally, we show that GR interacts with Smad3 both in vitro and in vivo. These results suggest a molecular basis for the cross-regulation between glucocorticoid and TGF-β signaling pathways.


{ddagger} To whom reprint requests should be addressed. E-mail: tdgum{at}umich.edu.

Communicated by Keith R. Yamamoto, University of California, San Francisco, CA

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Orphan Nuclear Receptor SHP Attenuates Renal Fibrosis.
G.-S. Jung, M.-K. Kim, M. S. Choe, K.-M. Lee, H.-S. Kim, Y. J. Park, H.-S. Choi, K.-U. Lee, K.-G. Park, and I.-K. Lee (2009)
J. Am. Soc. Nephrol. 20, 2162-2170
   Abstract »    Full Text »    PDF »
Combined experimental and computational approaches to study the regulatory elements in eukaryotic genes.
N. A. Kolchanov, T. I. Merkulova, E. V. Ignatieva, E. A. Ananko, D. Yu. Oshchepkov, V. G. Levitsky, G. V. Vasiliev, N. V. Klimova, V. M. Merkulov, and T. C. Hodgman (2007)
Brief Bioinform
   Abstract »    Full Text »    PDF »
Cloning of Chicken Glucocorticoid Receptor (GR) and Characterization of its Expression in Pituitary and Extrapituitary Tissues.
A. H. Y. Kwok, Y. Wang, C. Y. Wang, and F. C. Leung (2007)
Poultry Science 86, 423-430
   Abstract »    Full Text »    PDF »
Orphan Nuclear Receptor Small Heterodimer Partner Inhibits Transforming Growth Factor-beta Signaling by Repressing SMAD3 Transactivation.
J. H. Suh, J. Huang, Y.-Y. Park, H.-A Seong, D. Kim, M. Shong, H. Ha, I.-K. Lee, K. Lee, L. Wang, et al. (2006)
J. Biol. Chem. 281, 39169-39178
   Abstract »    Full Text »    PDF »
Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment.
K Janssens, F Vanhoenacker, M Bonduelle, L Verbruggen, L Van Maldergem, S Ralston, N Guanabens, N Migone, S Wientroub, M T Divizia, et al. (2006)
J. Med. Genet. 43, 1-11
   Abstract »    Full Text »    PDF »
Glucocorticoid Receptor Regulates ATP-Binding Cassette Transporter-A1 Expression and Apolipoprotein-Mediated Cholesterol Efflux From Macrophages.
M. Ayaori, S. Sawada, A. Yonemura, N. Iwamoto, M. Ogura, N. Tanaka, K. Nakaya, M. Kusuhara, H. Nakamura, and F. Ohsuzu (2006)
Arterioscler Thromb Vasc Biol 26, 163-168
   Abstract »    Full Text »    PDF »
The Smad6-Histone Deacetylase 3 Complex Silences the Transcriptional Activity of the Glucocorticoid Receptor: POTENTIAL CLINICAL IMPLICATIONS.
T. Ichijo, A. Voutetakis, A. P. Cotrim, N. Bhattachryya, M. Fujii, G. P. Chrousos, and T. Kino (2005)
J. Biol. Chem. 280, 42067-42077
   Abstract »    Full Text »    PDF »
Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.
T. M. Williams, M. E. Williams, J. H. Heaton, T. D. Gelehrter, and J. W. Innis (2005)
Nucleic Acids Res. 33, 4475-4484
   Abstract »    Full Text »    PDF »
Dexamethasone suppresses Smad3 pathway in osteoblastic cells.
M.-F. Iu, H. Kaji, H. Sowa, J. Naito, T. Sugimoto, and K. Chihara (2005)
J. Endocrinol. 185, 131-138
   Abstract »    Full Text »    PDF »
Glucocorticoid Enhances Transforming Growth Factor-{beta} Effects on Extracellular Matrix Protein Expression in Human Placental Mesenchymal Cells.
M.-J. Lee, Y. Ma, L. LaChapelle, S. S. Kadner, and S. Guller (2004)
Biol Reprod 70, 1246-1252
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {beta} Enhances the Glucocorticoid Response of the Mouse Mammary Tumor Virus Promoter through Smad and GA-Binding Proteins.
K. Aurrekoetxea-Hernandez and E. Buetti (2004)
J. Virol. 78, 2201-2211
   Abstract »    Full Text »    PDF »
Parathyroid Hormone-Smad3 Axis Exerts Anti-apoptotic Action and Augments Anabolic Action of Transforming Growth Factor {beta} in Osteoblasts.
H. Sowa, H. Kaji, M. F. Iu, T. Tsukamoto, T. Sugimoto, and K. Chihara (2003)
J. Biol. Chem. 278, 52240-52252
   Abstract »    Full Text »    PDF »
DACH1 Inhibits Transforming Growth Factor-{beta} Signaling through Binding Smad4.
K. Wu, Y. Yang, C. Wang, M. A. Davoli, M. D'Amico, A. Li, K. Cveklova, Z. Kozmik, M. P. Lisanti, R. G. Russell, et al. (2003)
J. Biol. Chem. 278, 51673-51684
   Abstract »    Full Text »    PDF »
Activation of TGF-{beta}-Smad signaling pathway following polyamine depletion in intestinal epithelial cells.
L. Liu, R. Santora, J. N. Rao, X. Guo, T. Zou, H. M. Zhang, D. J. Turner, and J.-Y. Wang (2003)
Am J Physiol Gastrointest Liver Physiol 285, G1056-G1067
   Abstract »    Full Text »    PDF »
Identification of Glucocorticoid Receptor Domains Involved in Transrepression of Transforming Growth Factor-{beta} Action.
G. Li, S. Wang, and T. D. Gelehrter (2003)
J. Biol. Chem. 278, 41779-41788
   Abstract »    Full Text »    PDF »
The Novel Synthetic Triterpenoid, CDDO-Imidazolide, Inhibits Inflammatory Response and Tumor Growth in Vivo.
A. E. Place, N. Suh, C. R. Williams, R. Risingsong, T. Honda, Y. Honda, G. W. Gribble, L. M. Leesnitzer, J. B. Stimmel, T. M. Willson, et al. (2003)
Clin. Cancer Res. 9, 2798-2806
   Abstract »    Full Text »    PDF »
Both Max and TFE3 Cooperate with Smad Proteins to Bind the Plasminogen Activator Inhibitor-1 Promoter, but They Have Opposite Effects on Transcriptional Activity.
A. V. Grinberg and T. Kerppola (2003)
J. Biol. Chem. 278, 11227-11236
   Abstract »    Full Text »    PDF »
Synthetic Triterpenoids Enhance Transforming Growth Factor {beta}/Smad Signaling.
N. Suh, A. B. Roberts, S. Birkey Reffey, K. Miyazono, S. Itoh, P. t. Dijke, E. H. Heiss, A. E. Place, R. Risingsong, C. R. Williams, et al. (2003)
Cancer Res. 63, 1371-1376
   Abstract »    Full Text »    PDF »
Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-beta -regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4.
W.-C. Chou, V. Prokova, K. Shiraishi, U. Valcourt, A. Moustakas, M. Hadzopoulou-Cladaras, V. I. Zannis, and D. Kardassis (2003)
Mol. Biol. Cell 14, 1279-1294
   Abstract »    Full Text »    PDF »
Differential Modulation of Androgen Receptor-mediated Transactivation by Smad3 and Tumor Suppressor Smad4.
H.-Y. Kang, K.-E. Huang, S. Y. Chang, W.-L. Ma, W.-J. Lin, and C. Chang (2002)
J. Biol. Chem. 277, 43749-43756
   Abstract »    Full Text »    PDF »
Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes.
J. Skillington, L. Choy, and R. Derynck (2002)
J. Cell Biol. 159, 135-146
   Abstract »    Full Text »    PDF »
Functional Interaction between Coactivators CBP/p300, PCAF, and Transcription Factor FKLF2.
C.-Z. Song, K. Keller, K. Murata, H. Asano, and G. Stamatoyannopoulos (2002)
J. Biol. Chem. 277, 7029-7036
   Abstract »    Full Text »    PDF »
Cross-talk between Transforming Growth Factor-beta and Estrogen Receptor Signaling through Smad3.
T. Matsuda, T. Yamamoto, A. Muraguchi, and F. Saatcioglu (2001)
J. Biol. Chem. 276, 42908-42914
   Abstract »    Full Text »    PDF »
Molecular mechanisms of TGF-{beta} antagonism by interferon {gamma} and cyclosporine A in lung fibroblasts.
O. EICKELBERG, A. PANSKY, E. KOEHLER, M. BIHL, M. TAMM, P. HILDEBRAND, A. P. PERRUCHOUD, M. KASHGARIAN, and M. ROTH (2001)
FASEB J 15, 797-806
   Abstract »    Full Text »    PDF »
SMAD3 Represses Androgen Receptor-mediated Transcription.
S. A. Hayes, M. Zarnegar, M. Sharma, F. Yang, D. M. Peehl, P. t. Dijke, and Z. Sun (2001)
Cancer Res. 61, 2112-2118
   Abstract »    Full Text »
Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins.
Z. A. Quinn, C.-C. Yang, J. L. Wrana, and J. C. McDermott (2001)
Nucleic Acids Res. 29, 732-742
   Abstract »    Full Text »    PDF »
Hoxa-9 Represses Transforming Growth Factor-beta -induced Osteopontin Gene Transcription.
X. Shi, S. Bai, L. Li, and X. Cao (2001)
J. Biol. Chem. 276, 850-855
   Abstract »    Full Text »    PDF »
SMAD Proteins Transactivate the Human ApoCIII Promoter by Interacting Physically and Functionally with Hepatocyte Nuclear Factor 4.
D. Kardassis, K. Pardali, and V. I. Zannis (2000)
J. Biol. Chem. 275, 41405-41414
   Abstract »    Full Text »    PDF »
Role of Transforming Growth Factor-{beta} Signaling in Cancer.
M. P. de Caestecker, E. Piek, and A. B. Roberts (2000)
J Natl Cancer Inst 92, 1388-1402
   Abstract »    Full Text »    PDF »
Transcriptional Cross-talk between Smad, ERK1/2, and p38 Mitogen-activated Protein Kinase Pathways Regulates Transforming Growth Factor-beta -induced Aggrecan Gene Expression in Chondrogenic ATDC5 Cells.
H. Watanabe, M. P. de Caestecker, and Y. Yamada (2001)
J. Biol. Chem. 276, 14466-14473
   Abstract »    Full Text »    PDF »
Hoxa-9 Represses Transforming Growth Factor-beta -induced Osteopontin Gene Transcription.
X. Shi, S. Bai, L. Li, and X. Cao (2001)
J. Biol. Chem. 276, 850-855
   Abstract »    Full Text »    PDF »
Transforming Growth Factor-beta Receptor-associated Protein 1 Is a Smad4 Chaperone.
J. U. Wurthner, D. B. Frank, A. Felici, H. M. Green, Z. Cao, M. D. Schneider, J. G. McNally, R. J. Lechleider, and A. B. Roberts (2001)
J. Biol. Chem. 276, 19495-19502
   Abstract »    Full Text »    PDF »
SMAD proteins transactivate the human APOCIII promoter by interacting physically and functionally with hepatocyte nuclear factor 4.
D. Kardassis, K. Pardali, and V. I. Zannis (2000)
J. Biol. Chem.
   Abstract »
Cross-talk between 1,25-Dihydroxyvitamin D3 and Transforming Growth Factor-beta Signaling Requires Binding of VDR and Smad3 Proteins to Their Cognate DNA Recognition Elements.
N. Subramaniam, G. M. Leong, T.-A. Cock, J. L. Flanagan, C. Fong, J. A. Eisman, and A. P. Kouzmenko (2001)
J. Biol. Chem. 276, 15741-15746
   Abstract »    Full Text »    PDF »
c-Jun Inhibits Transforming Growth Factor beta -mediated Transcription by Repressing Smad3 Transcriptional Activity.
S. Dennler, C. Prunier, N. Ferrand, J.-M. Gauthier, and A. Atfi (2000)
J. Biol. Chem. 275, 28858-28865
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882