Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 96 (22): 12679-12684

Copyright © 1999 by the National Academy of Sciences.


The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components

Bee Na Lee Elaine A. Elion*

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115

Accepted for publication September 1, 1999.

Received for publication March 22, 1999.

Abstract: In haploid Saccharomyces cerevisiae, the mating and invasive growth (IG) pathways use the same mitogen-activated protein kinase kinase kinase kinase (MAPKKKK, Ste20), MAPKKK (Ste11), MAPKK (Ste7), and transcription factor (Ste12) to promote either G1 arrest and fusion or foraging in response to distinct stimuli. This exquisite specificity is the result of pathway-specific receptors, G proteins, scaffold protein, and MAPKs. It is currently not thought that the shared signaling components function under the basal conditions of vegetative growth. We tested this hypothesis by searching for mutations that cause lethality when the STE11 gene is deleted. Strikingly, we found that Ste11, together with Ste20, Ste7, Ste12, and the IG MAPK Kss1, functions in a third pathway that promotes vegetative growth and is essential in an och1 mutant that does not synthesize mannoproteins. We term this pathway the STE vegetative growth (SVG) pathway. The SVG pathway functions, in part, to promote cell wall integrity in parallel with the protein kinase C pathway. During vegetative growth, the SVG pathway is inhibited by the mating MAPK Fus3. By contrast, the SVG pathway is constitutively activated in an och1 mutant, suggesting that it senses intracellular changes arising from the loss of mannoproteins. We predict that general proliferative functions may also exist for other MAPK cascades thought only to perform specialized functions.

* To whom reprint requests should be addressed. E-mail: elion{at}

Communicated by R. L. Erickson, Harvard University, Cambridge, MA

The G{alpha} Subunit Signals through the Ste50 Protein during the Mating Pheromone Response in the Yeast Kluyveromyces lactis.
E. Sanchez-Paredes, L. Kawasaki, L. Ongay-Larios, and R. Coria (2011)
Eukaryot. Cell 10, 540-546
   Abstract »    Full Text »    PDF »
{alpha}-1,6-Mannosylation of N-Linked Oligosaccharide Present on Cell Wall Proteins Is Required for Their Incorporation into the Cell Wall in the Filamentous Fungus Neurospora crassa.
A. Maddi and S. J. Free (2010)
Eukaryot. Cell 9, 1766-1775
   Abstract »    Full Text »    PDF »
Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK.
H.-Y. Yang, K. Tatebayashi, K. Yamamoto, and H. Saito (2009)
EMBO J. 28, 1380-1391
   Abstract »    Full Text »    PDF »
The Sequential Activation of the Yeast HOG and SLT2 Pathways Is Required for Cell Survival to Cell Wall Stress.
C. Bermejo, E. Rodriguez, R. Garcia, J. M. Rodriguez-Pena, M. L. Rodriguez de la Concepcion, C. Rivas, P. Arias, C. Nombela, F. Posas, and J. Arroyo (2008)
Mol. Biol. Cell 19, 1113-1124
   Abstract »    Full Text »    PDF »
Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity.
C. Tiedje, D. G. Holland, U. Just, and T. Hofken (2007)
J. Cell Sci. 120, 3613-3624
   Abstract »    Full Text »    PDF »
The Hsp40 Molecular Chaperone Ydj1p, Along With the Protein Kinase C Pathway, Affects Cell-Wall Integrity in the Yeast Saccharomyces cerevisiae.
C. M. Wright, S. W. Fewell, M. L. Sullivan, J. M. Pipas, S. C. Watkins, and J. L. Brodsky (2007)
Genetics 175, 1649-1664
   Abstract »    Full Text »    PDF »
Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium..
I. Rodriguez-Escudero, R. Rotger, V. J. Cid, and M. Molina (2006)
Microbiology 152, 3437-3452
   Abstract »    Full Text »    PDF »
Cell Wall Assembly in Saccharomyces cerevisiae.
G. Lesage and H. Bussey (2006)
Microbiol. Mol. Biol. Rev. 70, 317-343
   Abstract »    Full Text »    PDF »
The MAP kinase signal transduction network in Candida albicans..
R. A. Monge, E. Roman, C. Nombela, and J. Pla (2006)
Microbiology 152, 905-912
   Abstract »    Full Text »    PDF »
Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans..
K. Kojima, Y.-S. Bahn, and J. Heitman (2006)
Microbiology 152, 591-604
   Abstract »    Full Text »    PDF »
The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans.
B. Eisman, R. Alonso-Monge, E. Roman, D. Arana, C. Nombela, and J. Pla (2006)
Eukaryot. Cell 5, 347-358
   Abstract »    Full Text »    PDF »
Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans.
S. Bates, H. B. Hughes, C. A. Munro, W. P. H. Thomas, D. M. MacCallum, G. Bertram, A. Atrih, M. A. J. Ferguson, A. J. P. Brown, F. C. Odds, et al. (2006)
J. Biol. Chem. 281, 90-98
   Abstract »    Full Text »    PDF »
The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans.
E. Roman, C. Nombela, and J. Pla (2005)
Mol. Cell. Biol. 25, 10611-10627
   Abstract »    Full Text »    PDF »
The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans.
F. Navarro-Garcia, B. Eisman, S. M. Fiuza, C. Nombela, and J. Pla (2005)
Microbiology 151, 2737-2749
   Abstract »    Full Text »    PDF »
Yapsins Are a Family of Aspartyl Proteases Required for Cell Wall Integrity in Saccharomyces cerevisiae.
D. J. Krysan, E. L. Ting, C. Abeijon, L. Kroos, and R. S. Fuller (2005)
Eukaryot. Cell 4, 1364-1374
   Abstract »    Full Text »    PDF »
The 'yeast cell wall chip' - a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae.
J. M. Rodriguez-Pena, R. M. Perez-Diaz, S. Alvarez, C. Bermejo, R. Garcia, C. Santiago, C. Nombela, and J. Arroyo (2005)
Microbiology 151, 2241-2249
   Abstract »    Full Text »    PDF »
Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence.
A.-M. Calcagno, E. Bignell, T. R. Rogers, M. D. Jones, F. A. Muhlschlegel, and K. Haynes (2005)
Med Mycol 43, 355-364
   Abstract »    Full Text »    PDF »
Oxidative Stress Activates FUS1 and RLM1 Transcription in the Yeast Saccharomyces cerevisiae in an Oxidant-dependent Manner.
L. Staleva, A. Hall, and S. J. Orlow (2004)
Mol. Biol. Cell 15, 5574-5582
   Abstract »    Full Text »    PDF »
Localized Feedback Phosphorylation of Ste5p Scaffold by Associated MAPK Cascade.
A. Flotho, D. M. Simpson, M. Qi, and E. A. Elion (2004)
J. Biol. Chem. 279, 47391-47401
   Abstract »    Full Text »    PDF »
The genetics of Pak.
C. Hofmann, M. Shepelev, and J. Chernoff (2004)
J. Cell Sci. 117, 4343-4354
   Abstract »    Full Text »    PDF »
A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast.
P. J. Cullen, W. Sabbagh Jr., E. Graham, M. M. Irick, E. K. van Olden, C. Neal, J. Delrow, L. Bardwell, and G. F. Sprague Jr. (2004)
Genes & Dev. 18, 1695-1708
   Abstract »    Full Text »    PDF »
Differential input by Ste5 scaffold and Msg5 phosphatase route a MAPK cascade to multiple outcomes.
J. Andersson, D. M. Simpson, M. Qi, Y. Wang, and E. A. Elion (2004)
EMBO J. 23, 2564-2576
   Abstract »    Full Text »    PDF »
The Global Transcriptional Response to Transient Cell Wall Damage in Saccharomyces cerevisiae and Its Regulation by the Cell Integrity Signaling Pathway.
R. Garcia, C. Bermejo, C. Grau, R. Perez, J. M. Rodriguez-Pena, J. Francois, C. Nombela, and J. Arroyo (2004)
J. Biol. Chem. 279, 15183-15195
   Abstract »    Full Text »    PDF »
Reciprocal Regulation between Slt2 MAPK and Isoforms of Msg5 Dual-specificity Protein Phosphatase Modulates the Yeast Cell Integrity Pathway.
M. Flandez, I. C. Cosano, C. Nombela, H. Martin, and M. Molina (2004)
J. Biol. Chem. 279, 11027-11034
   Abstract »    Full Text »    PDF »
Evidence for Antagonistic Regulation of Cell Growth by the Calcineurin and High Osmolarity Glycerol Pathways in Saccharomyces cerevisiae.
A. Shitamukai, D. Hirata, S. Sonobe, and T. Miyakawa (2004)
J. Biol. Chem. 279, 3651-3661
   Abstract »    Full Text »    PDF »
Nuclear Export and Plasma Membrane Recruitment of the Ste5 Scaffold Are Coordinated with Oligomerization and Association with Signal Transduction Components.
Y. Wang and E. A. Elion (2003)
Mol. Biol. Cell 14, 2543-2558
   Abstract »    Full Text »    PDF »
Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways.
I. Wojda, R. Alonso-Monge, J.-P. Bebelman, W. H. Mager, and M. Siderius (2003)
Microbiology 149, 1193-1204
   Abstract »    Full Text »    PDF »
Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex.
C. Ruiz, V. Escribano, E. Morgado, M. Molina, and M. J. Mazon (2003)
Microbiology 149, 341-351
   Abstract »    Full Text »    PDF »
Rho5p downregulates the yeast cell integrity pathway.
H.-P. Schmitz, S. Huppert, A. Lorberg, and J. J. Heinisch (2002)
J. Cell Sci. 115, 3139-3148
   Abstract »    Full Text »    PDF »
Screening the Yeast "Disruptome" for Mutants Affecting Resistance to the Immunosuppressive Drug, Mycophenolic Acid.
C. Desmoucelles, B. Pinson, C. Saint-Marc, and B. Daignan-Fornier (2002)
J. Biol. Chem. 277, 27036-27044
   Abstract »    Full Text »    PDF »
A Novel Connection between the Yeast Cdc42 GTPase and the Slt2-mediated Cell Integrity Pathway Identified through the Effect of Secreted Salmonella GTPase Modulators.
J. M. Rodriguez-Pachon, H. Martin, G. North, R. Rotger, C. Nombela, and M. Molina (2002)
J. Biol. Chem. 277, 27094-27102
   Abstract »    Full Text »    PDF »
Osmotic Stress Signaling and Osmoadaptation in Yeasts.
S. Hohmann (2002)
Microbiol. Mol. Biol. Rev. 66, 300-372
   Abstract »    Full Text »    PDF »
Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth.
S. P. Palecek, A. S. Parikh, and S. J. Kron (2002)
Microbiology 148, 893-907
   Full Text »    PDF »
The Ste5p scaffold.
E. A. Elion (2001)
J. Cell Sci. 114, 3967-3978
   Abstract »    Full Text »    PDF »
Human ERK1 Induces Filamentous Growth and Cell Wall Remodeling Pathways in Saccharomyces cerevisiae.
J. M. Atienza, M. Suh, I. Xenarios, R. Landgraf, and J. Colicelli (2000)
J. Biol. Chem. 275, 20638-20646
   Abstract »    Full Text »    PDF »
Defects in Protein Glycosylation Cause SHO1-Dependent Activation of a STE12 Signaling Pathway in Yeast.
P. J. Cullen, J. Schultz, J. Horecka, B. J. Stevenson, Y. Jigami, and G. F. Sprague , Jr. (2000)
Genetics 155, 1005-1018
   Abstract »    Full Text »    PDF »
Effects of the NIK aly Mutation on NF-kappa B Activation by the Epstein-Barr Virus Latent Infection Membrane Protein, Lymphotoxin beta Receptor, and CD40.
M. A. Luftig, E. Cahir-McFarland, G. Mosialos, and E. Kieff (2001)
J. Biol. Chem. 276, 14602-14606
   Abstract »    Full Text »    PDF »
Human ERK1 Induces Filamentous Growth and Cell Wall Remodeling Pathways in Saccharomyces cerevisiae.
J. M. Atienza, M. Suh, I. Xenarios, R. Landgraf, and J. Colicelli (2000)
J. Biol. Chem.
   Abstract »
The Eukaryotic Two-Component Histidine Kinase Sln1p Regulates OCH1 via the Transcription Factor, Skn7p.
S. Li, S. Dean, Z. Li, J. Horecka, R. J. Deschenes, and J. S. Fassler (2002)
Mol. Biol. Cell 13, 412-424
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882