Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 97 (12): 6625-6629

Copyright © 2000 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / GENETICS

A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein

Herman K. Edskes Reed B. Wickner*

Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, MSC 0830, Bethesda, MD 20892-0830

Accepted for publication April 13, 2000.

Received for publication March 23, 2000.

Abstract: Infectious proteins (prions) can arise de novo as well as by transmission from another individual. De novo prion generation is believed responsible for most cases of Creutzfeldt–Jakob disease and for initiating the mad cow disease epidemic. However, the cellular components needed for prion generation have not been identified in any system. The [URE3] prion of Saccharomyces cerevisiae is an infectious form of Ure2p, apparently a self-propagating amyloid. We now demonstrate a protein required for de novo prion generation. Mks1p negatively regulates Ure2p and is itself negatively regulated by the presence of ammonia and by the Ras–cAMP pathway. We find that in mks1{Delta} strains, de novo generation of the [URE3] prion is blocked, although [URE3] introduced from another strain is expressed and propagates stably. Ras2Val19 increases cAMP production and also blocks [URE3] generation. These results emphasize the distinction between prion generation and propagation, and they show that cellular regulatory mechanisms can critically affect prion generation.


* To whom reprint requests should be addressed. E-mail: wickner{at}helix.nih.gov.

Communicated by Herbert Tabor, National Institutes of Health, Bethesda, MD

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.120168697.

Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.120168697

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Promiscuous Prion: Efficient Induction of [URE3] Prion Formation by Heterologous Prion Domains.
C. D. Ross, B. R. McCarty, M. Hamilton, A. Ben-Hur, and E. D. Ross (2009)
Genetics 183, 929-940
   Abstract »    Full Text »    PDF »
Prion Variants and Species Barriers Among Saccharomyces Ure2 Proteins.
H. K. Edskes, L. M. McCann, A. M. Hebert, and R. B. Wickner (2009)
Genetics 181, 1159-1167
   Abstract »    Full Text »    PDF »
Nucleotide Exchange Factors for Hsp70s Are Required for [URE3] Prion Propagation in Saccharomyces cerevisiae.
D. Kryndushkin and R. B. Wickner (2007)
Mol. Biol. Cell 18, 2149-2154
   Abstract »    Full Text »    PDF »
Suppressor Analysis of a Histone Defect Identifies a New Function for the Hda1 Complex in Chromosome Segregation.
H. Kanta, L. Laprade, A. Almutairi, and I. Pinto (2006)
Genetics 173, 435-450
   Abstract »    Full Text »    PDF »
Primary sequence independence for prion formation.
E. D. Ross, H. K. Edskes, M. J. Terry, and R. B. Wickner (2005)
PNAS 102, 12825-12830
   Abstract »    Full Text »    PDF »
Role for Hsp70 Chaperone in Saccharomyces cerevisiae Prion Seed Replication.
Y. Song, Y.-x. Wu, G. Jung, Y. Tutar, E. Eisenberg, L. E. Greene, and D. C. Masison (2005)
Eukaryot. Cell 4, 289-297
   Abstract »    Full Text »    PDF »
Scrambled Prion Domains Form Prions and Amyloid.
E. D. Ross, U. Baxa, and R. B. Wickner (2004)
Mol. Cell. Biol. 24, 7206-7213
   Abstract »    Full Text »    PDF »
Prions: proteins as genes and infectious entities.
R. B. Wickner, H. K. Edskes, B. T. Roberts, U. Baxa, M. M. Pierce, E. D. Ross, and A. Brachmann (2004)
Genes & Dev. 18, 470-485
   Full Text »    PDF »
Prions of Yeast Are Genes Made of Protein: Amyloids and Enzymes.
R.B. WICKNER, H.K. EDSKES, E.D. ROSS, M.M. PIERCE, F. SHEWMAKER, U. BAXA, and A. BRACHMANN (2004)
Cold Spring Harb Symp Quant Biol 69, 489-496
   Abstract »    PDF »
Ure2, a Prion Precursor with Homology to Glutathione S-Transferase, Protects Saccharomyces cerevisiae Cells from Heavy Metal Ion and Oxidant Toxicity.
R. Rai, J. J. Tate, and T. G. Cooper (2003)
J. Biol. Chem. 278, 12826-12833
   Abstract »    Full Text »    PDF »
Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein.
H. K. Edskes and R. B. Wickner (2002)
PNAS 99, 16384-16391
   Abstract »    Full Text »    PDF »
Interactions among prions and prion "strains" in yeast.
M. E. Bradley, H. K. Edskes, J. Y. Hong, R. B. Wickner, and S. W. Liebman (2002)
PNAS 99, 16392-16399
   Abstract »    Full Text »    PDF »
Mks1p Is Required for Negative Regulation of Retrograde Gene Expression in Saccharomyces cerevisiae but Does Not Affect Nitrogen Catabolite Repression-sensitive Gene Expression.
J. J. Tate, K. H. Cox, R. Rai, and T. G. Cooper (2002)
J. Biol. Chem. 277, 20477-20482
   Abstract »    Full Text »    PDF »
Antagonistic Interactions between Yeast [PSI+] and [URE3] Prions and Curing of [URE3] by Hsp70 Protein Chaperone Ssa1p but Not by Ssa2p.
C. Schwimmer and D. C. Masison (2002)
Mol. Cell. Biol. 22, 3590-3598
   Abstract »    Full Text »    PDF »
A novel Rtg2p activity regulates nitrogen catabolism in yeast.
M. M. Pierce, M.-L. Maddelein, B. T. Roberts, and R. B. Wickner (2001)
PNAS 98, 13213-13218
   Abstract »    Full Text »    PDF »
Induction of Distinct [URE3] Yeast Prion Strains.
M. Schlumpberger, S. B. Prusiner, and I. Herskowitz (2001)
Mol. Cell. Biol. 21, 7035-7046
   Abstract »    Full Text »    PDF »
The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p.
T. C. Umland, K. L. Taylor, S. Rhee, R. B. Wickner, and D. R. Davies (2001)
PNAS 98, 1459-1464
   Abstract »    Full Text »    PDF »
The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p.
T. C. Umland, K. L. Taylor, S. Rhee, R. B. Wickner, and D. R. Davies (2001)
PNAS
   Abstract »    Full Text »
The Level of DAL80 Expression Down-Regulates GATA Factor-Mediated Transcription in Saccharomyces cerevisiae.
T. S. Cunningham, R. Rai, and T. G. Cooper (2000)
J. Bacteriol. 182, 6584-6591
   Abstract »    Full Text »    PDF »
[URE3] Prion Propagation in Saccharomyces cerevisiae: Requirement for Chaperone Hsp104 and Curing by Overexpressed Chaperone Ydj1p.
H. Moriyama, H. K. Edskes, and R. B. Wickner (2000)
Mol. Cell. Biol. 20, 8916-8922
   Abstract »    Full Text »    PDF »
Tripartite Regulation of Gln3p by TOR, Ure2p, and Phosphatases.
P. G. Bertram, J. H. Choi, J. Carvalho, W. Ai, C. Zeng, T.-F. Chan, and X. F. S. Zheng (2000)
J. Biol. Chem. 275, 35727-35733
   Abstract »    Full Text »    PDF »
Roles of the Dal82p Domains in Allophanate/Oxalurate-dependent Gene Expression inSaccharomyces cerevisiae.
S. Scott, A. T. Abul-Hamd, and T. G. Cooper (2000)
J. Biol. Chem. 275, 30886-30893
   Abstract »    Full Text »    PDF »
Tripartite regulation of Gln3p by TOR, Ure2p and phosphatases.
P. G. Bertram, J. H. Choi, J. Carvalho, W. Ai, C. Zeng, T.-F. Chan, and X.F. S. Zheng (2000)
J. Biol. Chem.
   Abstract »
Roles of the Dal82p domains in allophanate/OXLU-dependent gene expression in Saccharomyces cerevisiae.
S. Scott, A. T. Abul-Hamd, and T. G. Cooper (2000)
J. Biol. Chem.
   Abstract »
The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p.
T. C. Umland, K. L. Taylor, S. Rhee, R. B. Wickner, and D. R. Davies (2001)
PNAS
   Abstract »    Full Text »
A novel Rtg2p activity regulates nitrogen catabolism in yeast.
M. M. Pierce, M.-L. Maddelein, B. T. Roberts, and R. B. Wickner (2001)
PNAS 98, 13213-13218
   Abstract »    Full Text »    PDF »
RTG-dependent Mitochondria-to-Nucleus Signaling Is Regulated by MKS1 and Is Linked to Formation of Yeast Prion [URE3].
T. Sekito, Z. Liu, J. Thornton, and R. A. Butow (2002)
Mol. Biol. Cell 13, 795-804
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882