Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 97 (14): 7835-7840

Copyright © 2000 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3- 3-dependent cellular localization

Christina M. Grozinger Stuart L. Schreiber*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138

Contributed by Stuart L. Schreiber

Accepted for publication May 3, 2000.

Abstract: Transcription is controlled in part by the dynamic acetylation and deacetylation of histone proteins. The latter process is mediated by histone deacetylases (HDACs). Previous analysis of the regulation of HDAC activity in transcription has focused primarily on the recruitment of HDAC proteins to specific promoters or chromosomal domains by association with DNA-binding proteins. To characterize the cellular function of the recently identified HDAC4 and HDAC5 proteins, complexes were isolated by immunoprecipitation. Both HDACs were found to interact with14-3-3 proteins at three phosphorylation sites. The association of 14-3-3 with HDAC4 and HDAC5 results in the sequestration of these proteins in the cytoplasm. Loss of this interaction allows HDAC4 and HDAC5 to translocate to the nucleus, interact with HDAC3, and repress gene expression. Regulation of the cellular localization of HDAC4 and HDAC5 by 14-3-3 represents a mechanism for controlling the transcriptional activity of these class II HDAC proteins.


* To whom reprint requests should be addressed. E-mail: sls{at}slsiris.harvard.edu.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.140199597.

Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.140199597

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1.
Y. Jeong, R. Du, X. Zhu, S. Yin, J. Wang, H. Cui, W. Cao, and C. J. Lowenstein (2014)
J. Leukoc. Biol. 95, 651-659
   Abstract »    Full Text »    PDF »
The functional interactome landscape of the human histone deacetylase family.
P. Joshi, T. M. Greco, A. J. Guise, Y. Luo, F. Yu, A. I. Nesvizhskii, and I. M. Cristea (2014)
Mol Syst Biol 9, 672
   Abstract »    Full Text »    PDF »
A Glycine Soja 14-3-3 Protein GsGF14o Participates in Stomatal and Root Hair Development and Drought Tolerance in Arabidopsis thaliana.
X. Sun, X. Luo, M. Sun, C. Chen, X. Ding, X. Wang, S. Yang, Q. Yu, B. Jia, W. Ji, et al. (2014)
Plant Cell Physiol. 55, 99-118
   Abstract »    Full Text »    PDF »
MEF2 Is a Converging Hub for Histone Deacetylase 4 and Phosphatidylinositol 3-Kinase/Akt-Induced Transformation.
E. Di Giorgio, A. Clocchiatti, S. Piccinin, A. Sgorbissa, G. Viviani, P. Peruzzo, S. Romeo, S. Rossi, A. P. Dei Tos, R. Maestro, et al. (2013)
Mol. Cell. Biol. 33, 4473-4491
   Abstract »    Full Text »    PDF »
Involvement of Epac1/Rap1/CaMKI/HDAC5 signaling cascade in the regulation of placental cell fusion.
C.-W. Chang, M.-L. Cheong, G.-D. Chang, M.-S. Tsai, and H. Chen (2013)
Mol. Hum. Reprod. 19, 745-755
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5.
X. Fu, J.-X. Zhao, J. Liang, M.-J. Zhu, M. Foretz, B. Viollet, and M. Du (2013)
Am J Physiol Cell Physiol 305, C887-C895
   Abstract »    Full Text »    PDF »
Detrimental Effect of Class-selective Histone Deacetylase Inhibitors during Tissue Regeneration following Hindlimb Ischemia.
F. Spallotta, S. Tardivo, S. Nanni, J. D. Rosati, S. Straino, A. Mai, M. Vecellio, S. Valente, M. C. Capogrossi, A. Farsetti, et al. (2013)
J. Biol. Chem. 288, 22915-22929
   Abstract »    Full Text »    PDF »
Opposing HDAC4 nuclear fluxes due to phosphorylation by {beta}-adrenergic activated protein kinase A or by activity or Epac activated CaMKII in skeletal muscle fibres.
Y. Liu and M. F. Schneider (2013)
J. Physiol. 591, 3605-3623
   Abstract »    Full Text »    PDF »
HDAC3 Is a Negative Regulator of Cocaine-Context-Associated Memory Formation.
G. A. Rogge, H. Singh, R. Dang, and M. A. Wood (2013)
J. Neurosci. 33, 6623-6632
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases.
D. R. Walkinshaw, R. Weist, G.-W. Kim, L. You, L. Xiao, J. Nie, C. S. Li, S. Zhao, M. Xu, and X.-J. Yang (2013)
J. Biol. Chem. 288, 9345-9362
   Abstract »    Full Text »    PDF »
Nuclear Calcium Signaling Regulates Nuclear Export of a Subset of Class IIa Histone Deacetylases following Synaptic Activity.
F. Schlumm, D. Mauceri, H. E. Freitag, and H. Bading (2013)
J. Biol. Chem. 288, 8074-8084
   Abstract »    Full Text »    PDF »
Class IIa HDACs repressive activities on MEF2-depedent transcription are associated with poor prognosis of ER+ breast tumors.
A. Clocchiatti, E. Di Giorgio, S. Ingrao, F.-J. Meyer-Almes, C. Tripodo, and C. Brancolini (2013)
FASEB J 27, 942-954
   Abstract »    Full Text »    PDF »
Acute {beta}-Adrenergic Activation Triggers Nuclear Import of Histone Deacetylase 5 and Delays Gq-induced Transcriptional Activation.
C.-W. J. Chang, L. Lee, D. Yu, K. Dao, J. Bossuyt, and D. M. Bers (2013)
J. Biol. Chem. 288, 192-204
   Abstract »    Full Text »    PDF »
CKIP-1 Inhibits Cardiac Hypertrophy by Regulating Class II Histone Deacetylase Phosphorylation Through Recruiting PP2A.
S. Ling, Q. Sun, Y. Li, L. Zhang, P. Zhang, X. Wang, C. Tian, Q. Li, J. Song, H. Liu, et al. (2012)
Circulation 126, 3028-3040
   Abstract »    Full Text »    PDF »
Nuclear export of histone deacetylase 7 during thymic selection is required for immune self-tolerance.
H. G. Kasler, H. W. Lim, D. Mottet, A. M. Collins, I. S. Lee, and E. Verdin (2012)
EMBO J. 31, 4453-4465
   Abstract »    Full Text »    PDF »
Aurora B-dependent Regulation of Class IIa Histone Deacetylases by Mitotic Nuclear Localization Signal Phosphorylation.
A. J. Guise, T. M. Greco, I. Y. Zhang, F. Yu, and I. M. Cristea (2012)
Mol. Cell. Proteomics 11, 1220-1229
   Abstract »    Full Text »    PDF »
Stimulation of Histone Deacetylase Activity by Metabolites of Intermediary Metabolism.
M. Vogelauer, A. S. Krall, M. A. McBrian, J.-Y. Li, and S. K. Kurdistani (2012)
J. Biol. Chem. 287, 32006-32016
   Abstract »    Full Text »    PDF »
The role of CaMKII in regulating GLUT4 expression in skeletal muscle.
E. O. Ojuka, V. Goyaram, and J. A. H. Smith (2012)
Am J Physiol Endocrinol Metab 303, E322-E331
   Abstract »    Full Text »    PDF »
Subcellular relocation of histone deacetylase 4 regulates growth plate chondrocyte differentiation through Ca2+/calmodulin-dependent kinase IV.
Y. Guan, Q. Chen, X. Yang, P. Haines, M. Pei, R. Terek, X. Wei, T. Zhao, and L. Wei (2012)
Am J Physiol Cell Physiol 303, C33-C40
   Abstract »    Full Text »    PDF »
Sequence-Specific Recognition of a PxLPxI/L Motif by an Ankyrin Repeat Tumbler Lock.
C. Xu, J. Jin, C. Bian, R. Lam, R. Tian, R. Weist, L. You, J. Nie, A. Bochkarev, W. Tempel, et al. (2012)
Science Signaling 5, ra39
   Abstract »    Full Text »    PDF »
Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4.
J. Backs, B. C. Worst, L. H. Lehmann, D. M. Patrick, Z. Jebessa, M. M. Kreusser, Q. Sun, L. Chen, C. Heft, H. A. Katus, et al. (2011)
J. Cell Biol. 195, 403-415
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase Regulates {beta}-Catenin Transcription via Histone Deacetylase 5.
J.-X. Zhao, W.-F. Yue, M.-J. Zhu, and M. Du (2011)
J. Biol. Chem. 286, 16426-16434
   Abstract »    Full Text »    PDF »
Nuclear Import of Histone Deacetylase 5 by Requisite Nuclear Localization Signal Phosphorylation.
T. M. Greco, F. Yu, A. J. Guise, and I. M. Cristea (2011)
Mol. Cell. Proteomics 10, M110.004317
   Abstract »    Full Text »    PDF »
Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility.
N. Cernotta, A. Clocchiatti, C. Florean, and C. Brancolini (2011)
Mol. Biol. Cell 22, 278-289
   Abstract »    Full Text »    PDF »
HDAC3 Is a Critical Negative Regulator of Long-Term Memory Formation.
S. C. McQuown, R. M. Barrett, D. P. Matheos, R. J. Post, G. A. Rogge, T. Alenghat, S. E. Mullican, S. Jones, J. R. Rusche, M. A. Lazar, et al. (2011)
J. Neurosci. 31, 764-774
   Abstract »    Full Text »    PDF »
PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy.
C. H. Ha, J. Y. Kim, J. Zhao, W. Wang, B. S. Jhun, C. Wong, and Z. G. Jin (2010)
PNAS 107, 15467-15472
   Abstract »    Full Text »    PDF »
14-3-3 Binding Sites in the Snail Protein Are Essential for Snail-Mediated Transcriptional Repression and Epithelial-Mesenchymal Differentiation.
Z. Hou, H. Peng, D. E. White, P. Wang, P. M. Lieberman, T. Halazonetis, and F. J. Rauscher III (2010)
Cancer Res. 70, 4385-4393
   Abstract »    Full Text »    PDF »
Epigenetic regulation of endometrium during the menstrual cycle.
S. K. Munro, C. M. Farquhar, M. D. Mitchell, and A. P. Ponnampalam (2010)
Mol. Hum. Reprod. 16, 297-310
   Abstract »    Full Text »    PDF »
HDAC4 Represses Matrix Metalloproteinase-13 Transcription in Osteoblastic Cells, and Parathyroid Hormone Controls This Repression.
E. Shimizu, N. Selvamurugan, J. J. Westendorf, E. N. Olson, and N. C. Partridge (2010)
J. Biol. Chem. 285, 9616-9626
   Abstract »    Full Text »    PDF »
Nuclear-Cytoplasmic Shuttling of Chibby Controls {beta}-Catenin Signaling.
F.-Q. Li, A. Mofunanya, V. Fischer, J. Hall, and K.-I. Takemaru (2010)
Mol. Biol. Cell 21, 311-322
   Abstract »    Full Text »    PDF »
Parathyroid Hormone-Related Peptide Represses Chondrocyte Hypertrophy through a Protein Phosphatase 2A/Histone Deacetylase 4/MEF2 Pathway.
E. Kozhemyakina, T. Cohen, T.-P. Yao, and A. B. Lassar (2009)
Mol. Cell. Biol. 29, 5751-5762
   Abstract »    Full Text »    PDF »
Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle.
M. Murgia, T. E. Jensen, M. Cusinato, M. Garcia, E. A. Richter, and S. Schiaffino (2009)
J. Physiol. 587, 4319-4327
   Abstract »    Full Text »    PDF »
Loss of Histone Deacetylase 4 Causes Segregation Defects during Mitosis of p53-Deficient Human Tumor Cells.
B. Cadot, M. Brunetti, S. Coppari, S. Fedeli, E. de Rinaldis, C. D. Russo, P. Gallinari, R. De Francesco, C. Steinkuhler, and G. Filocamo (2009)
Cancer Res. 69, 6074-6082
   Abstract »    Full Text »    PDF »
Direct Interaction between Myocyte Enhancer Factor 2 (MEF2) and Protein Phosphatase 1{alpha} Represses MEF2-Dependent Gene Expression.
R. L. S. Perry, C. Yang, N. Soora, J. Salma, M. Marback, L. Naghibi, H. Ilyas, J. Chan, J. W. Gordon, and J. C. McDermott (2009)
Mol. Cell. Biol. 29, 3355-3366
   Abstract »    Full Text »    PDF »
Regulation of GLUT4 expression in denervated skeletal muscle.
E. B. Jensen, D. Zheng, R. A. Russell, R. Bassel-Duby, R. S. Williams, A. L. Olson, and G. L. Dohm (2009)
Am J Physiol Regulatory Integrative Comp Physiol 296, R1820-R1828
   Abstract »    Full Text »    PDF »
A Histone Deacetylase 4/Myogenin Positive Feedback Loop Coordinates Denervation-dependent Gene Induction and Suppression.
H. Tang, P. Macpherson, M. Marvin, E. Meadows, W. H. Klein, X.-J. Yang, and D. Goldman (2009)
Mol. Biol. Cell 20, 1120-1131
   Abstract »    Full Text »    PDF »
Bone Morphogenic Protein 2 Activates Protein Kinase D to Regulate Histone Deacetylase 7 Localization and Repression of Runx2.
E. D. Jensen, R. Gopalakrishnan, and J. J. Westendorf (2009)
J. Biol. Chem. 284, 2225-2234
   Abstract »    Full Text »    PDF »
Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription.
W.-L. Wang, Y.-C. Lee, W.-M. Yang, W.-C. Chang, and J.-M. Wang (2008)
Nucleic Acids Res. 36, 6066-6079
   Abstract »    Full Text »    PDF »
HDAC4 Promotes Growth of Colon Cancer Cells via Repression of p21.
A. J. Wilson, D.-S. Byun, S. Nasser, L. B. Murray, K. Ayyanar, D. Arango, M. Figueroa, A. Melnick, G. D. Kao, L. H. Augenlicht, et al. (2008)
Mol. Biol. Cell 19, 4062-4075
   Abstract »    Full Text »    PDF »
Regulation of Nuclear Import/Export of Carbohydrate Response Element-binding Protein (ChREBP): INTERACTION OF AN {alpha}-HELIX OF ChREBP WITH THE 14-3-3 PROTEINS AND REGULATION BY PHOSPHORYLATION.
H. Sakiyama, R. M. Wynn, W.-R. Lee, M. Fukasawa, H. Mizuguchi, K. H. Gardner, J. J. Repa, and K. Uyeda (2008)
J. Biol. Chem. 283, 24899-24908
   Abstract »    Full Text »    PDF »
CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene.
J. A. H. Smith, T. A. Kohn, A. K. Chetty, and E. O. Ojuka (2008)
Am J Physiol Endocrinol Metab 295, E698-E704
   Abstract »    Full Text »    PDF »
Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution.
S. Ray, C. Lee, T. Hou, I. Boldogh, and A. R. Brasier (2008)
Nucleic Acids Res. 36, 4510-4520
   Abstract »    Full Text »    PDF »
A Novel Binding Factor of 14-3-3{beta} Functions as a Transcriptional Repressor and Promotes Anchorage-independent Growth, Tumorigenicity, and Metastasis.
Y. Komiya, N. Kurabe, K. Katagiri, M. Ogawa, A. Sugiyama, Y. Kawasaki, and F. Tashiro (2008)
J. Biol. Chem. 283, 18753-18764
   Abstract »    Full Text »    PDF »
Phosphorylation by Casein Kinase 1 Regulates Tonicity-induced Osmotic Response Element-binding Protein/Tonicity Enhancer-binding Protein Nucleocytoplasmic Trafficking.
S. Xu, C. C. L. Wong, E. H. Y. Tong, S. S. M. Chung, J. R. Yates III, Y. Yin, and B. C. B. Ko (2008)
J. Biol. Chem. 283, 17624-17634
   Abstract »    Full Text »    PDF »
Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7.
S. Wang, X. Li, M. Parra, E. Verdin, R. Bassel-Duby, and E. N. Olson (2008)
PNAS 105, 7738-7743
   Abstract »    Full Text »    PDF »
Histone Deacetylase 5 Acquires Calcium/Calmodulin-Dependent Kinase II Responsiveness by Oligomerization with Histone Deacetylase 4.
J. Backs, T. Backs, S. Bezprozvannaya, T. A. McKinsey, and E. N. Olson (2008)
Mol. Cell. Biol. 28, 3437-3445
   Abstract »    Full Text »    PDF »
AMP-Activated Protein Kinase Regulates GLUT4 Transcription by Phosphorylating Histone Deacetylase 5.
S. L. McGee, B. J.W. van Denderen, K. F. Howlett, J. Mollica, J. D. Schertzer, B. E. Kemp, and M. Hargreaves (2008)
Diabetes 57, 860-867
   Abstract »    Full Text »    PDF »
PP2A Regulates HDAC4 Nuclear Import.
G. Paroni, N. Cernotta, C. Dello Russo, P. Gallinari, M. Pallaoro, C. Foti, F. Talamo, L. Orsatti, C. Steinkuhler, and C. Brancolini (2008)
Mol. Biol. Cell 19, 655-667
   Abstract »    Full Text »    PDF »
Proteomics Approach to Identify Dehydration Responsive Nuclear Proteins from Chickpea (Cicer arietinum L.).
A. Pandey, S. Chakraborty, A. Datta, and N. Chakraborty (2008)
Mol. Cell. Proteomics 7, 88-107
   Abstract »    Full Text »    PDF »
Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2.
J. von Blume, U. Knippschild, F. Dequiedt, G. Giamas, A. Beck, A. Auer, J. Van Lint, G. Adler, and T. Seufferlein (2007)
EMBO J. 26, 4619-4633
   Abstract »    Full Text »    PDF »
Angiotensin II Stimulates Protein Kinase D-Dependent Histone Deacetylase 5 Phosphorylation and Nuclear Export Leading to Vascular Smooth Muscle Cell Hypertrophy.
X. Xu, C.-H. Ha, C. Wong, W. Wang, A. Hausser, K. Pfizenmaier, E. N. Olson, T. A. McKinsey, and Z.-G. Jin (2007)
Arterioscler Thromb Vasc Biol 27, 2355-2362
   Abstract »    Full Text »    PDF »
The Neurodegenerative Disease Protein Ataxin-1 Antagonizes the Neuronal Survival Function of Myocyte Enhancer Factor-2.
T. A. Bolger, X. Zhao, T. J. Cohen, C.-C. Tsai, and T.-P. Yao (2007)
J. Biol. Chem. 282, 29186-29192
   Abstract »    Full Text »    PDF »
Dephosphorylation and Caspase Processing Generate Distinct Nuclear Pools of Histone Deacetylase 4.
G. Paroni, A. Fontanini, N. Cernotta, C. Foti, M. P. Gupta, X.-J. Yang, D. Fasino, and C. Brancolini (2007)
Mol. Cell. Biol. 27, 6718-6732
   Abstract »    Full Text »    PDF »
Histone Deacetylase Inhibitors: Overview and Perspectives.
M. Dokmanovic, C. Clarke, and P. A. Marks (2007)
Mol. Cancer Res. 5, 981-989
   Abstract »    Full Text »    PDF »
Histone Deacetylase 7 Functions as a Key Regulator of Genes Involved in both Positive and Negative Selection of Thymocytes.
H. G. Kasler and E. Verdin (2007)
Mol. Cell. Biol. 27, 5184-5200
   Abstract »    Full Text »    PDF »
p27Kip1 localization depends on the tumor suppressor protein tuberin.
M. Rosner, A. Freilinger, M. Hanneder, N. Fujita, G. Lubec, T. Tsuruo, and M. Hengstschlager (2007)
Hum. Mol. Genet. 16, 1541-1556
   Abstract »    Full Text »    PDF »
Distinct Mechanisms Involving Diverse Histone Deacetylases Repress Expression of the Two Gonadotropin {beta}-Subunit Genes in Immature Gonadotropes, and Their Actions Are Overcome by Gonadotropin-Releasing Hormone.
S. Lim, M. Luo, M. Koh, M. Yang, M. N. bin Abdul Kadir, J. H. Tan, Z. Ye, W. Wang, and P. Melamed (2007)
Mol. Cell. Biol. 27, 4105-4120
   Abstract »    Full Text »    PDF »
Functional and Physical Interactions between Yeast 14-3-3 Proteins, Acetyltransferases, and Deacetylases in Response to DNA Replication Perturbations.
F. Lottersberger, A. Panza, G. Lucchini, and M. P. Longhese (2007)
Mol. Cell. Biol. 27, 3266-3281
   Abstract »    Full Text »    PDF »
Co-repressor SMRT and Class II Histone Deacetylases Promote Bach2 Nuclear Retention and Formation of Nuclear Foci that are Responsible for Local Transcriptional Repression.
H. Hoshino, T. G. Nishino, S. Tashiro, M. Miyazaki, Y. Ohmiya, K. Igarashi, S. Horinouchi, and M. Yoshida (2007)
J. Biochem. 141, 719-727
   Abstract »    Full Text »    PDF »
Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes.
M. Parra, T. Mahmoudi, and E. Verdin (2007)
Genes & Dev. 21, 638-643
   Abstract »    Full Text »    PDF »
Nuclear Calcium/Calmodulin-dependent Protein Kinase II{delta} Preferentially Transmits Signals to Histone Deacetylase 4 in Cardiac Cells.
G. H. Little, Y. Bai, T. Williams, and C. Poizat (2007)
J. Biol. Chem. 282, 7219-7231
   Abstract »    Full Text »    PDF »
Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo.
J. A. H. Smith, M. Collins, L. A. Grobler, C. J. Magee, and E. O. Ojuka (2007)
Am J Physiol Endocrinol Metab 292, E413-E420
   Abstract »    Full Text »    PDF »
Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4.
D. Portal, A. Rosendorff, and E. Kieff (2006)
PNAS 103, 19278-19283
   Abstract »    Full Text »    PDF »
Transgenic Mouse Proteomics Identifies New 14-3-3-associated Proteins Involved in Cytoskeletal Rearrangements and Cell Signaling.
P.-O. Angrand, I. Segura, P. Volkel, S. Ghidelli, R. Terry, M. Brajenovic, K. Vintersten, R. Klein, G. Superti-Furga, G. Drewes, et al. (2006)
Mol. Cell. Proteomics 5, 2211-2227
   Abstract »    Full Text »    PDF »
Transporter regulator RS1 (RSC1A1) coats the trans-Golgi network and migrates into the nucleus.
M. Kroiss, M. Leyerer, V. Gorboulev, T. Kuhlkamp, H. Kipp, and H. Koepsell (2006)
Am J Physiol Renal Physiol 291, F1201-F1212
   Abstract »    Full Text »    PDF »
New Role for hPar-1 Kinases EMK and C-TAK1 in Regulating Localization and Activity of Class IIa Histone Deacetylases.
F. Dequiedt, M. Martin, J. Von Blume, D. Vertommen, E. Lecomte, N. Mari, M.-F. Heinen, M. Bachmann, J.-C. Twizere, M. C. Huang, et al. (2006)
Mol. Cell. Biol. 26, 7086-7102
   Abstract »    Full Text »    PDF »
Differential Effects of Ca2+ and cAMP on Transcription Mediated by MEF2D and cAMP-response Element-binding Protein in Hippocampal Neurons.
J. L. Belfield, C. Whittaker, M. Z. Cader, and S. Chawla (2006)
J. Biol. Chem. 281, 27724-27732
   Abstract »    Full Text »    PDF »
Efficient nuclear export of p65-I{kappa}B{alpha} complexes requires 14-3-3 proteins.
C. Aguilera, V. Fernandez-Majada, J. Ingles-Esteve, V. Rodilla, A. Bigas, and L. Espinosa (2006)
J. Cell Sci. 119, 3695-3704
   Abstract »    Full Text »    PDF »
14-3-3 Mediates Transcriptional Regulation by Modulating Nucleocytoplasmic Shuttling of Tobacco DNA-binding Protein Phosphatase-1.
J. L. Carrasco, M. J. Castello, and P. Vera (2006)
J. Biol. Chem. 281, 22875-22881
   Abstract »    Full Text »    PDF »
Regulation of Cardiac Stress Signaling by Protein Kinase D1.
B. C. Harrison, M.-S. Kim, E. van Rooij, C. F. Plato, P. J. Papst, R. B. Vega, J. A. McAnally, J. A. Richardson, R. Bassel-Duby, E. N. Olson, et al. (2006)
Mol. Cell. Biol. 26, 3875-3888
   Abstract »    Full Text »    PDF »
14-3-3 proteins integrate E2F activity with the DNA damage response.
A. H. Milton, N. Khaire, L. Ingram, A. J. O'donnell, and N. B. La Thangue (2006)
EMBO J. 25, 1046-1057
   Abstract »    Full Text »    PDF »
DNA Damage Promotes Histone Deacetylase 4 Nuclear Localization and Repression of G2/M Promoters, via p53 C-terminal Lysines.
V. Basile, R. Mantovani, and C. Imbriano (2006)
J. Biol. Chem. 281, 2347-2357
   Abstract »    Full Text »    PDF »
Control of Cardiac Growth by Histone Acetylation/Deacetylation.
J. Backs and E. N. Olson (2006)
Circ. Res. 98, 15-24
   Abstract »    Full Text »    PDF »
Class II Histone Deacetylases Confer Signal Responsiveness to the Ankyrin-Repeat Proteins ANKRA2 and RFXANK.
T. A. McKinsey, K. Kuwahara, S. Bezprozvannaya, and E. N. Olson (2006)
Mol. Biol. Cell 17, 438-447
   Abstract »    Full Text »    PDF »
G{beta}{gamma} Binds Histone Deacetylase 5 (HDAC5) and Inhibits Its Transcriptional Co-repression Activity.
B. D. Spiegelberg and H. E. Hamm (2005)
J. Biol. Chem. 280, 41769-41776
   Abstract »    Full Text »    PDF »
The DnaJ-Related Factor Mrj Interacts with Nuclear Factor of Activated T Cells c3 and Mediates Transcriptional Repression through Class II Histone Deacetylase Recruitment.
Y.-S. Dai, J. Xu, and J. D. Molkentin (2005)
Mol. Cell. Biol. 25, 9936-9948
   Abstract »    Full Text »    PDF »
Intracellular Trafficking of Histone Deacetylase 4 Regulates Neuronal Cell Death.
T. A. Bolger and T.-P. Yao (2005)
J. Neurosci. 25, 9544-9553
   Abstract »    Full Text »    PDF »
Identification of the Ankyrin Repeat Proteins ANKRA and RFXANK as Novel Partners of Class IIa Histone Deacetylases.
A. H. Wang, S. Gregoire, E. Zika, L. Xiao, C. S. Li, H. Li, K. L. Wright, J. P. Ting, and X.-J. Yang (2005)
J. Biol. Chem. 280, 29117-29127
   Abstract »    Full Text »    PDF »
14-3-3 Proteins: A Number of Functions for a Numbered Protein.
D. Bridges and G. B. G. Moorhead (2005)
Sci. STKE 2005, re10
   Abstract »    Full Text »    PDF »
Cross-species Sequence Analysis Reveals Multiple Charged Residue-rich Domains That Regulate Nuclear/Cytoplasmic Partitioning and Membrane Localization of A Kinase Anchoring Protein 12 (SSeCKS/Gravin).
J. W. Streb and J. M. Miano (2005)
J. Biol. Chem. 280, 28007-28014
   Abstract »    Full Text »    PDF »
Repression of Runx2 function by TGF-{beta} through recruitment of class II histone deacetylases by Smad3.
J. S. Kang, T. Alliston, R. Delston, and R. Derynck (2005)
EMBO J. 24, 2543-2555
   Abstract »    Full Text »    PDF »
Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation.
F. Pan, A. R. Means, and J. O. Liu (2005)
EMBO J. 24, 2104-2113
   Abstract »    Full Text »    PDF »
An expression screen reveals modulators of class II histone deacetylase phosphorylation.
S. Chang, S. Bezprozvannaya, S. Li, and E. N. Olson (2005)
PNAS 102, 8120-8125
   Abstract »    Full Text »    PDF »
Promotion of importin {alpha}-mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14-3-3.
C. Faul, S. Huttelmaier, J. Oh, V. Hachet, R. H. Singer, and P. Mundel (2005)
J. Cell Biol. 169, 415-424
   Abstract »    Full Text »    PDF »
Class II Histone Deacetylases: from Sequence to Function, Regulation, and Clinical Implication.
X.-J. Yang and S. Gregoire (2005)
Mol. Cell. Biol. 25, 2873-2884
   Full Text »    PDF »
Protein Kinase D1 Phosphorylates HDAC7 and Induces Its Nuclear Export after T-cell Receptor Activation.
M. Parra, H. Kasler, T. A. McKinsey, E. N. Olson, and E. Verdin (2005)
J. Biol. Chem. 280, 13762-13770
   Abstract »    Full Text »    PDF »
Isoform-specific Subcellular Localization among 14-3-3 Proteins in Arabidopsis Seems to be Driven by Client Interactions.
A.-L. Paul, P. C. Sehnke, and R. J. Ferl (2005)
Mol. Biol. Cell 16, 1735-1743
   Abstract »    Full Text »    PDF »
Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle.
Y. Liu, W. R. Randall, and M. F. Schneider (2005)
J. Cell Biol. 168, 887-897
   Abstract »    Full Text »    PDF »
Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis.
F. Dequiedt, J. Van Lint, E. Lecomte, V. Van Duppen, T. Seufferlein, J. R. Vandenheede, R. Wattiez, and R. Kettmann (2005)
J. Exp. Med. 201, 793-804
   Abstract »    Full Text »    PDF »
Structural Determinants of Constitutive Androstane Receptor Required for Its Glucocorticoid Receptor Interacting Protein-1-mediated Nuclear Accumulation.
J. Xia and B. Kemper (2005)
J. Biol. Chem. 280, 7285-7293
   Abstract »    Full Text »    PDF »
SMRT and N-CoR Corepressors Are Regulated by Distinct Kinase Signaling Pathways.
B. A. Jonas and M. L. Privalsky (2004)
J. Biol. Chem. 279, 54676-54686
   Abstract »    Full Text »    PDF »
The CRM1 Nuclear Export Receptor Controls Pathological Cardiac Gene Expression.
B. C. Harrison, C. R. Roberts, D. B. Hood, M. Sweeney, J. M. Gould, E. W. Bush, and T. A. McKinsey (2004)
Mol. Cell. Biol. 24, 10636-10649
   Abstract »    Full Text »    PDF »
Recruitment of I{kappa}B{alpha} to the hes1 promoter is associated with transcriptional repression.
C. Aguilera, R. Hoya-Arias, G. Haegeman, L. Espinosa, and A. Bigas (2004)
PNAS 101, 16537-16542
   Abstract »    Full Text »    PDF »
Protein Kinases C and D Mediate Agonist-Dependent Cardiac Hypertrophy through Nuclear Export of Histone Deacetylase 5.
R. B. Vega, B. C. Harrison, E. Meadows, C. R. Roberts, P. J. Papst, E. N. Olson, and T. A. McKinsey (2004)
Mol. Cell. Biol. 24, 8374-8385
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882