Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 97 (16): 8910-8915

Copyright © 2000 by the National Academy of Sciences.

Inaugural Article


BIOLOGICAL SCIENCES / BIOCHEMISTRY

Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate

Gregory S. Taylor, Tomohiko Maehama*, and Jack E. Dixon{dagger}

Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606

Contributed by Jack E. Dixon

Accepted for publication June 2, 2000.

Abstract: The lipid second messenger phosphatidylinositol 3-phosphate [PI(3)P] plays a crucial role in intracellular membrane trafficking. We report here that myotubularin, a protein tyrosine phosphatase required for muscle cell differentiation, is a potent PI(3)P phosphatase. Recombinant human myotubularin specifically dephosphorylates PI(3)P in vitro. Overexpression of a catalytically inactive substrate-trapping myotubularin mutant (C375S) in human 293 cells increases PI(3)P levels relative to that of cells overexpressing the wild-type enzyme, demonstrating that PI(3)P is a substrate for myotubularin in vivo. In addition, a Saccharomyces cerevisiae strain in which the myotubularin-like gene (YJR110w) is disrupted also exhibits increased PI(3)P levels. Both the recombinant yeast enzyme and a human myotubularin-related protein (KIAA0371) are able to dephosphorylate PI(3)P in vitro, suggesting that this activity is intrinsic to all myotubularin family members. Mutations in the MTM1 gene that cause human myotubular myopathy dramatically reduce the ability of the phosphatase to dephosphorylate PI(3)P. Our findings provide evidence that myotubularin exerts its effects during myogenesis by regulating cellular levels of the inositol lipid PI(3)P.


* Present address: Department of Pharmacology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo, Tokyo 113-8163, Japan.

{dagger} To whom reprint requests should be addressed. E-mail: jedixon{at}umich.edu.

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on May 2, 2000.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.160255697.

Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.160255697

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies.
B. Royer, K. Hnia, C. Gavriilidis, H. Tronchere, V. Tosch, and J. Laporte (2013)
EMBO Rep. 14, 907-915
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9.
J. L. Gallop, A. Walrant, L. C. Cantley, and M. W. Kirschner (2013)
PNAS 110, 7193-7198
   Abstract »    Full Text »    PDF »
Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy.
M. W. Lawlor, D. Armstrong, M. G. Viola, J. J. Widrick, H. Meng, R. W. Grange, M. K. Childers, C. P. Hsu, M. O'Callaghan, C. R. Pierson, et al. (2013)
Hum. Mol. Genet. 22, 1525-1538
   Abstract »    Full Text »    PDF »
Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo.
L. Amoasii, K. Hnia, G. Chicanne, A. Brech, B. S. Cowling, M. M. Muller, Y. Schwab, P. Koebel, A. Ferry, B. Payrastre, et al. (2013)
J. Cell Sci. 126, 1806-1819
   Abstract »    Full Text »    PDF »
Differential phosphorylation of the phosphoinositide 3-phosphatase MTMR2 regulates its association with early endosomal subtypes.
N. E. Franklin, C. A. Bonham, B. Xhabija, and P. O. Vacratsis (2013)
J. Cell Sci. 126, 1333-1344
   Abstract »    Full Text »    PDF »
Identification of a Mammalian-type Phosphatidylglycerophosphate Phosphatase in the Eubacterium Rhodopirellula baltica.
P. G. Teh, M. J. Chen, J. L. Engel, C. A. Worby, G. Manning, J. E. Dixon, and J. Zhang (2013)
J. Biol. Chem. 288, 5176-5185
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-Phosphatase Myotubularin-related Protein 6 (MTMR6) Is Regulated by Small GTPase Rab1B in the Early Secretory and Autophagic Pathways.
Y. Mochizuki, R. Ohashi, T. Kawamura, H. Iwanari, T. Kodama, M. Naito, and T. Hamakubo (2013)
J. Biol. Chem. 288, 1009-1021
   Abstract »    Full Text »    PDF »
Defective Autophagy and mTORC1 Signaling in Myotubularin Null Mice.
K. M. Fetalvero, Y. Yu, M. Goetschkes, G. Liang, R. A. Valdez, T. Gould, E. Triantafellow, S. Bergling, J. Loureiro, J. Eash, et al. (2013)
Mol. Cell. Biol. 33, 98-110
   Abstract »    Full Text »    PDF »
Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase.
F. Hsu, W. Zhu, L. Brennan, L. Tao, Z.-Q. Luo, and Y. Mao (2012)
PNAS 109, 13567-13572
   Abstract »    Full Text »    PDF »
Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth.
P. A. C. van Gisbergen, M. Li, S.-Z. Wu, and M. Bezanilla (2012)
J. Cell Biol. 198, 235-250
   Abstract »    Full Text »    PDF »
Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling.
S. Jean, S. Cox, E. J. Schmidt, F. L. Robinson, and A. Kiger (2012)
Mol. Biol. Cell 23, 2723-2740
   Abstract »    Full Text »    PDF »
SNAREs, HOPS and regulatory lipids control the dynamics of vacuolar actin during homotypic fusion in S. cerevisiae.
S. Karunakaran, T. Sasser, S. Rajalekshmi, and R. A. Fratti (2012)
J. Cell Sci. 125, 1683-1692
   Abstract »    Full Text »    PDF »
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae.
S. A. Henry, S. D. Kohlwein, and G. M. Carman (2012)
Genetics 190, 317-349
   Abstract »    Full Text »    PDF »
Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis.
J. Xiao, J. L. Engel, J. Zhang, M. J. Chen, G. Manning, and J. E. Dixon (2011)
PNAS 108, 11860-11865
   Abstract »    Full Text »    PDF »
Myotubularin Regulates Akt-dependent Survival Signaling via Phosphatidylinositol 3-Phosphate.
G. L. Razidlo, D. Katafiasz, and G. S. Taylor (2011)
J. Biol. Chem. 286, 20005-20019
   Abstract »    Full Text »    PDF »
The phosphoinositide phosphatase MTM-1 regulates apoptotic cell corpse clearance through CED-5-CED-12 in C. elegans.
L. J. Neukomm, A.-S. Nicot, J. M. Kinchen, J. Almendinger, S. M. Pinto, S. Zeng, K. Doukoumetzidis, H. Tronchere, B. Payrastre, J. F. Laporte, et al. (2011)
Development 138, 2003-2014
   Abstract »    Full Text »    PDF »
Endosomal Targeting of the Phosphoinositide 3-Phosphatase MTMR2 Is Regulated by an N-terminal Phosphorylation Site.
N. E. Franklin, G. S. Taylor, and P. O. Vacratsis (2011)
J. Biol. Chem. 286, 15841-15853
   Abstract »    Full Text »    PDF »
Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells.
M. Silhankova, F. Port, M. Harterink, K. Basler, and H. C. Korswagen (2010)
EMBO J. 29, 4094-4105
   Abstract »    Full Text »    PDF »
Time-Resolved Ultrastructural Detection of Phosphatidylinositol 3-Phosphate.
S. Stuffers, L. Malerod, K. O. Schink, S. Corvera, H. Stenmark, and A. Brech (2010)
Journal of Histochemistry & Cytochemistry 58, 1025-1032
   Abstract »    Full Text »    PDF »
The myotubularin phosphatase MTMR4 regulates sorting from early endosomes.
M. J. Naughtin, D. A. Sheffield, P. Rahman, W. E. Hughes, R. Gurung, J. L. Stow, H. H. Nandurkar, J. M. Dyson, and C. A. Mitchell (2010)
J. Cell Sci. 123, 3071-3083
   Abstract »    Full Text »    PDF »
Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions.
M. Velichkova, J. Juan, P. Kadandale, S. Jean, I. Ribeiro, V. Raman, C. Stefan, and A. A. Kiger (2010)
J. Cell Biol. 190, 407-425
   Abstract »    Full Text »    PDF »
Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy.
J. J. Dowling, S. E. Low, A. S. Busta, and E. L. Feldman (2010)
Hum. Mol. Genet. 19, 2668-2681
   Abstract »    Full Text »    PDF »
The Neurosecretory Vesicle Protein Phogrin Functions as a Phosphatidylinositol Phosphatase to Regulate Insulin Secretion.
L. A. Caromile, A. Oganesian, S. A. Coats, R. A. Seifert, and D. F. Bowen-Pope (2010)
J. Biol. Chem. 285, 10487-10496
   Abstract »    Full Text »    PDF »
T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase.
L. Al-Qusairi, N. Weiss, A. Toussaint, C. Berbey, N. Messaddeq, C. Kretz, D. Sanoudou, A. H. Beggs, B. Allard, J.-L. Mandel, et al. (2009)
PNAS 106, 18763-18768
   Abstract »    Full Text »    PDF »
Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy.
I. Vergne, E. Roberts, R. A. Elmaoued, V. Tosch, M. A. Delgado, T. Proikas-Cezanne, J. Laporte, and V. Deretic (2009)
EMBO J. 28, 2244-2258
   Abstract »    Full Text »    PDF »
Phosphoinositide phosphatases and disease.
P. W. Majerus and J. D. York (2009)
J. Lipid Res. 50, S249-S254
   Abstract »    Full Text »    PDF »
MTMR9 Increases MTMR6 Enzyme Activity, Stability, and Role in Apoptosis.
J. Zou, S.-C. Chang, J. Marjanovic, and P. W. Majerus (2009)
J. Biol. Chem. 284, 2064-2071
   Abstract »    Full Text »    PDF »
Sequential Actions of Myotubularin Lipid Phosphatases Regulate Endosomal PI(3)P and Growth Factor Receptor Trafficking.
C. Cao, J. M. Backer, J. Laporte, E. J. Bedrick, and A. Wandinger-Ness (2008)
Mol. Biol. Cell 19, 3334-3346
   Abstract »    Full Text »    PDF »
Membrane Topology and Essential Amino Acid Residues of Phs1, a 3-Hydroxyacyl-CoA Dehydratase Involved in Very Long-chain Fatty Acid Elongation.
A. Kihara, H. Sakuraba, M. Ikeda, A. Denpoh, and Y. Igarashi (2008)
J. Biol. Chem. 283, 11199-11209
   Abstract »    Full Text »    PDF »
Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral neuropathy in mice.
F. L. Robinson, I. R. Niesman, K. K. Beiswenger, and J. E. Dixon (2008)
PNAS 105, 4916-4921
   Abstract »    Full Text »    PDF »
Malin Decreases Glycogen Accumulation by Promoting the Degradation of Protein Targeting to Glycogen (PTG).
C. A. Worby, M. S. Gentry, and J. E. Dixon (2008)
J. Biol. Chem. 283, 4069-4076
   Abstract »    Full Text »    PDF »
Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo.
V. S. Tagliabracci, J. Turnbull, W. Wang, J.-M. Girard, X. Zhao, A. V. Skurat, A. V. Delgado-Escueta, B. A. Minassian, A. A. DePaoli-Roach, and P. J. Roach (2007)
PNAS 104, 19262-19266
   Abstract »    Full Text »    PDF »
The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease.
M. S. Gentry, R. H. Dowen III, C. A. Worby, S. Mattoo, J. R. Ecker, and J. E. Dixon (2007)
J. Cell Biol. 178, 477-488
   Abstract »    Full Text »    PDF »
Distinct Targeting and Fusion Functions of the PX and SNARE Domains of Yeast Vacuolar Vam7p.
R. A. Fratti and W. Wickner (2007)
J. Biol. Chem. 282, 13133-13138
   Abstract »    Full Text »    PDF »
A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy.
V. Tosch, H. M. Rohde, H. Tronchere, E. Zanoteli, N. Monroy, C. Kretz, N. Dondaine, B. Payrastre, J.-L. Mandel, and J. Laporte (2006)
Hum. Mol. Genet. 15, 3098-3106
   Abstract »    Full Text »    PDF »
Specificity of the Myotubularin Family of Phosphatidylinositol-3-phosphatase Is Determined by the PH/GRAM Domain.
P. Choudhury, S. Srivastava, Z. Li, K. Ko, M. Albaqumi, K. Narayan, W. A. Coetzee, M. A. Lemmon, and E. Y. Skolnik (2006)
J. Biol. Chem. 281, 31762-31769
   Abstract »    Full Text »    PDF »
Compartmental signal modulation: Endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting.
N. Fili, V. Calleja, R. Woscholski, P. J. Parker, and B. Larijani (2006)
PNAS 103, 15473-15478
   Abstract »    Full Text »    PDF »
Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosomerelated functions.
O. Lorenzo, S. Urbe, and M. J. Clague (2006)
J. Cell Sci. 119, 2953-2959
   Abstract »    Full Text »    PDF »
Compartmentalization of the Exocyst Complex in Lipid Rafts Controls Glut4 Vesicle Tethering.
M. Inoue, S.-H. Chiang, L. Chang, X.-W. Chen, and A. R. Saltiel (2006)
Mol. Biol. Cell 17, 2303-2311
   Abstract »    Full Text »    PDF »
The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover.
J. E. Duex, F. Tang, and L. S. Weisman (2006)
J. Cell Biol. 172, 693-704
   Abstract »    Full Text »    PDF »
Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase.
M. J. Begley, G. S. Taylor, M. A. Brock, P. Ghosh, V. L. Woods, and J. E. Dixon (2006)
PNAS 103, 927-932
   Abstract »    Full Text »    PDF »
PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway.
W. R. Parrish, C. J. Stefan, and S. D. Emr (2005)
J. Cell Sci. 118, 5589-5601
   Abstract »    Full Text »    PDF »
The Phosphoinositide-3-phosphatase MTMR2 Associates with MTMR13, a Membrane-associated Pseudophosphatase Also Mutated in Type 4B Charcot-Marie-Tooth Disease.
F. L. Robinson and J. E. Dixon (2005)
J. Biol. Chem. 280, 31699-31707
   Abstract »    Full Text »    PDF »
SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dog.
M. Pele, L. Tiret, J.-L. Kessler, S. Blot, and J.-J. Panthier (2005)
Hum. Mol. Genet. 14, 1905-1906
   Full Text »    PDF »
From The Cover: Insights into Lafora disease: Malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin.
M. S. Gentry, C. A. Worby, and J. E. Dixon (2005)
PNAS 102, 8501-8506
   Abstract »    Full Text »    PDF »
SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs.
M. Pele, L. Tiret, J.-L. Kessler, S. Blot, and J.-J. Panthier (2005)
Hum. Mol. Genet. 14, 1417-1427
   Abstract »    Full Text »    PDF »
Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis.
I. Vergne, J. Chua, H.-H. Lee, M. Lucas, J. Belisle, and V. Deretic (2005)
PNAS 102, 4033-4038
   Abstract »    Full Text »    PDF »
Identification of Putative New Splicing Targets for ETR-3 Using Sequences Identified by Systematic Evolution of Ligands by Exponential Enrichment.
N. A. Faustino and T. A. Cooper (2005)
Mol. Cell. Biol. 25, 879-887
   Abstract »    Full Text »    PDF »
Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles.
R. A. Fratti, Y. Jun, A. J. Merz, N. Margolis, and W. Wickner (2004)
J. Cell Biol. 167, 1087-1098
   Abstract »    Full Text »    PDF »
A PTEN-like Phosphatase with a Novel Substrate Specificity.
D. J. Pagliarini, C. A. Worby, and J. E. Dixon (2004)
J. Biol. Chem. 279, 38590-38596
   Abstract »    Full Text »    PDF »
Mycobacterium tuberculosis Reprograms Waves of Phosphatidylinositol 3-Phosphate on Phagosomal Organelles.
J. Chua and V. Deretic (2004)
J. Biol. Chem. 279, 36982-36992
   Abstract »    Full Text »    PDF »
Essential Role for the Myotubularin-related Phosphatase Ymr1p and the Synaptojanin-like Phosphatases Sjl2p and Sjl3p in Regulation of Phosphatidylinositol 3-Phosphate in Yeast.
W. R. Parrish, C. J. Stefan, and S. D. Emr (2004)
Mol. Biol. Cell 15, 3567-3579
   Abstract »    Full Text »    PDF »
Phosphoinositides in Constitutive Membrane Traffic.
M. G. Roth (2004)
Physiol Rev 84, 699-730
   Abstract »    Full Text »    PDF »
Clinical and histologic findings in autosomal centronuclear myopathy.
P.-Y. Jeannet, G. Bassez, B. Eymard, P. Laforet, J. A. Urtizberea, A. Rouche, P. Guicheney, M. Fardeau, and N. B. Romero (2004)
Neurology 62, 1484-1490
   Abstract »    Full Text »    PDF »
Myotubularin Regulates the Function of the Late Endosome through the GRAM Domain-Phosphatidylinositol 3,5-Bisphosphate Interaction.
K. Tsujita, T. Itoh, T. Ijuin, A. Yamamoto, A. Shisheva, J. Laporte, and T. Takenawa (2004)
J. Biol. Chem. 279, 13817-13824
   Abstract »    Full Text »    PDF »
Production of Phosphatidylinositol 5-Phosphate by the Phosphoinositide 3-Phosphatase Myotubularin in Mammalian Cells.
H. Tronchere, J. Laporte, C. Pendaries, C. Chaussade, L. Liaubet, L. Pirola, J.-L. Mandel, and B. Payrastre (2004)
J. Biol. Chem. 279, 7304-7312
   Abstract »    Full Text »    PDF »
Disease-related Myotubularins Function in Endocytic Traffic in Caenorhabditis elegans.
H. Dang, Z. Li, E. Y. Skolnik, and H. Fares (2004)
Mol. Biol. Cell 15, 189-196
   Abstract »    Full Text »    PDF »
A genome-wide survey of human tyrosine phosphatases.
A. Bhaduri and R. Sowdhamini (2003)
Protein Eng. Des. Sel. 16, 881-888
   Abstract »    Full Text »    PDF »
Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases.
J. Laporte, F. Bedez, A. Bolino, and J.-L. Mandel (2003)
Hum. Mol. Genet. 12, R285-R292
   Abstract »    Full Text »    PDF »
Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module.
P. Berger, C. Schaffitzel, I. Berger, N. Ban, and U. Suter (2003)
PNAS 100, 12177-12182
   Abstract »    Full Text »    PDF »
A PTEN-related 5-Phosphatidylinositol Phosphatase Localized in the Golgi.
S. Merlot, R. Meili, D. J. Pagliarini, T. Maehama, J. E. Dixon, and R. A. Firtel (2003)
J. Biol. Chem. 278, 39866-39873
   Abstract »    Full Text »    PDF »
Genetic Analysis of the Myotubularin Family of Phosphatases in Caenorhabditis elegans.
Y. Xue, H. Fares, B. Grant, Z. Li, A. M. Rose, S. G. Clark, and E. Y. Skolnik (2003)
J. Biol. Chem. 278, 34380-34386
   Abstract »    Full Text »    PDF »
Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9.
Y. Mochizuki and P. W. Majerus (2003)
PNAS 100, 9768-9773
   Abstract »    Full Text »    PDF »
Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP.
H. H. Nandurkar, M. Layton, J. Laporte, C. Selan, L. Corcoran, K. K. Caldwell, Y. Mochizuki, P. W. Majerus, and C. A. Mitchell (2003)
PNAS 100, 8660-8665
   Abstract »    Full Text »    PDF »
PTEN and Phosphatidylinositol 3'-Kinase Inhibitors Up-Regulate p53 and Block Tumor-induced Angiogenesis: Evidence for an Effect on the Tumor and Endothelial Compartment.
J. D. Su, L. D. Mayo, D. B. Donner, and D. L. Durden (2003)
Cancer Res. 63, 3585-3592
   Abstract »    Full Text »    PDF »
Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation.
A. Oganesian, M. Poot, G. Daum, S. A. Coats, M. B. Wright, R. A. Seifert, and D. F. Bowen-Pope (2003)
PNAS 100, 7563-7568
   Abstract »    Full Text »    PDF »
Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse.
A. R.R. Forrest, T. Ravasi, D. Taylor, T. Huber, D. A. Hume, RIKEN GER Group, GSL Members, and S. Grimmond (2003)
Genome Res. 13, 1443-1454
   Abstract »    Full Text »    PDF »
Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase.
S.-A. Kim, P. O. Vacratsis, R. Firestein, M. L. Cleary, and J. E. Dixon (2003)
PNAS 100, 4492-4497
   Abstract »    Full Text »    PDF »
Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15.
J. Senderek, C. Bergmann, S. Weber, U.-P. Ketelsen, H. Schorle, S. Rudnik-Schoneborn, R. Buttner, E. Buchheim, and K. Zerres (2003)
Hum. Mol. Genet. 12, 349-356
   Abstract »    Full Text »    PDF »
The Identification of Pats1, a Novel Gene Locus Required for Cytokinesis in Dictyostelium discoideum.
J. C. Abysalh, L. L. Kuchnicki, and D. A. Larochelle (2003)
Mol. Biol. Cell 14, 14-25
   Abstract »    Full Text »    PDF »
Multimerization of the Protein-tyrosine Phosphatase (PTP)-like Insulin-dependent Diabetes Mellitus Autoantigens IA-2 and IA-2{beta} with Receptor PTPs (RPTPs): INHIBITION OF RPTP{alpha} ENZYMATIC ACTIVITY.
S. Gross, C. Blanchetot, J. Schepens, S. Albet, R. Lammers, J. den Hertog, and W. Hendriks (2002)
J. Biol. Chem. 277, 48139-48145
   Abstract »    Full Text »    PDF »
The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice.
A. Buj-Bello, V. Laugel, N. Messaddeq, H. Zahreddine, J. Laporte, J.-F. Pellissier, and J.-L. Mandel (2002)
PNAS 99, 15060-15065
   Abstract »    Full Text »    PDF »
Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells.
A. Buj-Bello, D. Furling, H. Tronchere, J. Laporte, T. Lerouge, G. S. Butler-Browne, and J.-L. Mandel (2002)
Hum. Mol. Genet. 11, 2297-2307
   Abstract »    Full Text »    PDF »
Inositol Phospholipid Metabolism in Arabidopsis. Characterized and Putative Isoforms of Inositol Phospholipid Kinase and Phosphoinositide-Specific Phospholipase C.
B. Mueller-Roeber and C. Pical (2002)
Plant Physiology 130, 22-46
   Abstract »    Full Text »    PDF »
The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles.
J. Laporte, F. Blondeau, A. Gansmuller, Y. Lutz, J.-L. Vonesch, and J.-L. Mandel (2002)
J. Cell Sci. 115, 3105-3117
   Abstract »    Full Text »    PDF »
Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1.
P. Berger, S. Bonneick, S. Willi, M. Wymann, and U. Suter (2002)
Hum. Mol. Genet. 11, 1569-1579
   Abstract »    Full Text »    PDF »
Myotubularin and MTMR2, Phosphatidylinositol 3-Phosphatases Mutated in Myotubular Myopathy and Type 4B Charcot-Marie-Tooth Disease.
S.-A Kim, G. S. Taylor, K. M. Torgersen, and J. E. Dixon (2002)
J. Biol. Chem. 277, 4526-4531
   Abstract »    Full Text »    PDF »
Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate.
J. V. Virbasius, X. Song, D. P. Pomerleau, Y. Zhan, G. W. Zhou, and M. P. Czech (2001)
PNAS 98, 12908-12913
   Abstract »    Full Text »    PDF »
Pseudo-phosphatase Sbf1 contains an N-terminal GEF homology domain that modulates its growth regulatory properties.
R. Firestein and M. L. Cleary (2001)
J. Cell Sci. 114, 2921-2927
   Abstract »    Full Text »    PDF »
Characterization of an adapter subunit to a phosphatidylinositol (3)P 3-phosphatase: Identification of a myotubularin-related protein lacking catalytic activity.
H. H. Nandurkar, K. K. Caldwell, J. C. Whisstock, M. J. Layton, E. A. Gaudet, F. A. Norris, P. W. Majerus, and C. A. Mitchell (2001)
PNAS 98, 9499-9504
   Abstract »    Full Text »    PDF »
A Unique Carbohydrate Binding Domain Targets the Lafora Disease Phosphatase to Glycogen.
J. Wang, J. A. Stuckey, M. J. Wishart, and J. E. Dixon (2002)
J. Biol. Chem. 277, 2377-2380
   Abstract »    Full Text »    PDF »
Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate.
J. V. Virbasius, X. Song, D. P. Pomerleau, Y. Zhan, G. W. Zhou, and M. P. Czech (2001)
PNAS 98, 12908-12913
   Abstract »    Full Text »    PDF »
Regulation of Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase Family Member.
J. D. Gary, T. K. Sato, C. J. Stefan, C. J. Bonangelino, L. S. Weisman, and S. D. Emr (2002)
Mol. Biol. Cell 13, 1238-1251
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882