Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 97 (16): 9287-9292

Copyright © 2000 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / NEUROBIOLOGY

Spinophilin regulates the formation and function of dendritic spines

Jian Feng*,{dagger}, Zhen Yan*, Adriana Ferreira{ddagger}, Kazuhito Tomizawa*, Jason A. Liauw§, Min Zhuo§, Patrick B. Allen*, Charles C. Ouimet, and Paul Greengard*

*Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021; {ddagger}Department of Cell and Molecular Biology, Northwestern Institute for Neuroscience, Northwestern University, Chicago, IL 60611; §Department of Anesthesiology, Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110; and Program in Neuroscience, Florida State University, Tallahassee, FL 32306

Contributed by Paul Greengard

Accepted for publication May 30, 2000.

Abstract: Spinophilin, a protein that interacts with actin and protein phosphatase-1, is highly enriched in dendritic spines. Here, through the use of spinophilin knockout mice, we provide evidence that spinophilin modulates both glutamatergic synaptic transmission and dendritic morphology. The ability of protein phosphatase-1 to regulate the activity of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors was reduced in spinophilin knockout mice. Consistent with altered glutamatergic transmission, spinophilin-deficient mice showed reduced long-term depression and exhibited resistance to kainate-induced seizures and neuronal apoptosis. In addition, deletion of the spinophilin gene caused a marked increase in spine density during development in vivo as well as altered filopodial formation in cultured neurons. In conclusion, spinophilin appears to be required for the regulation of the properties of dendritic spines.


{dagger} To whom reprint requests should be addressed at: Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021. E-mail: fengji{at}rockvax.rockefeller.edu.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Obesity Elicits Interleukin 1-Mediated Deficits in Hippocampal Synaptic Plasticity.
J. R. Erion, M. Wosiski-Kuhn, A. Dey, S. Hao, C. L. Davis, N. K. Pollock, and A. M. Stranahan (2014)
J. Neurosci. 34, 2618-2631
   Abstract »    Full Text »    PDF »
Dendritic Spines: The Locus of Structural and Functional Plasticity.
C. Sala and M. Segal (2014)
Physiol Rev 94, 141-188
   Abstract »    Full Text »    PDF »
Cross-talk from {beta}-Adrenergic Receptors Modulates {alpha}2A-Adrenergic Receptor Endocytosis in Sympathetic Neurons via Protein Kinase A and Spinophilin.
C. Cottingham, R. Lu, K. Jiao, and Q. Wang (2013)
J. Biol. Chem. 288, 29193-29205
   Abstract »    Full Text »    PDF »
Spinophilin Loss Correlates with Poor Patient Prognosis in Advanced Stages of Colon Carcinoma.
P. Estevez-Garcia, I. Lopez-Calderero, S. Molina-Pinelo, S. Munoz-Galvan, A. Salinas, L. Gomez-Izquierdo, A. Lucena-Cacace, B. Felipe-Abrio, L. Paz-Ares, R. Garcia-Carbonero, et al. (2013)
Clin. Cancer Res. 19, 3925-3935
   Abstract »    Full Text »    PDF »
Spinophilin as a novel regulator of M3 muscarinic receptor-mediated insulin release in vitro and in vivo.
I. Ruiz de Azua, K.-i. Nakajima, M. Rossi, Y. Cui, W. Jou, O. Gavrilova, and J. Wess (2012)
FASEB J 26, 4275-4286
   Abstract »    Full Text »    PDF »
Structural Modulation of Dendritic Spines during Synaptic Plasticity.
D. A. Fortin, T. Srivastava, and T. R. Soderling (2012)
Neuroscientist 18, 326-341
   Abstract »    Full Text »    PDF »
A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling.
P. Ma, A. Cierniewska, R. Signarvic, M. Cieslak, H. Kong, A. J. Sinnamon, R. R. Neubig, D. K. Newman, T. J. Stalker, and L. F. Brass (2012)
Blood 119, 1935-1945
   Abstract »    Full Text »    PDF »
Aberrant Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity Is Associated with Abnormal Dendritic Spine Morphology in the ATRX Mutant Mouse Brain.
N. Shioda, H. Beppu, T. Fukuda, E. Li, I. Kitajima, and K. Fukunaga (2011)
J. Neurosci. 31, 346-358
   Abstract »    Full Text »    PDF »
Phosphorylation-State-Dependent Regulation of NMDA Receptor Short-Term Plasticity Modifies Hippocampal Dendritic Ca2+ Transients.
D. Chatterjea, E. Hamid, J. P. Leonard, and S. Alford (2010)
J Neurophysiol 104, 2203-2213
   Abstract »    Full Text »    PDF »
Enhanced Hypotensive, Bradycardic, and Hypnotic Responses to {alpha}2-Adrenergic Agonists in Spinophilin-Null Mice Are Accompanied by Increased G Protein Coupling to the {alpha}2A-Adrenergic Receptor.
R. Lu, Y. Chen, C. Cottingham, N. Peng, K. Jiao, L. E. Limbird, J. M. Wyss, and Q. Wang (2010)
Mol. Pharmacol. 78, 279-286
   Abstract »    Full Text »    PDF »
Identification and Validation of Novel Spinophilin-associated Proteins in Rodent Striatum Using an Enhanced ex Vivo Shotgun Proteomics Approach.
A. J. Baucum II, N. Jalan-Sakrikar, Y. Jiao, R. M. Gustin, L. C. Carmody, D. L. Tabb, A.-J. L. Ham, and R. J. Colbran (2010)
Mol. Cell. Proteomics 9, 1243-1259
   Abstract »    Full Text »    PDF »
Role of the Multidomain Protein Spinophilin in Blood Pressure and Cardiac Function Regulation.
A. C. da Costa-Goncalves, J. Tank, R. Plehm, A. Diedrich, M. Todiras, M. Gollasch, A. Heuser, M. Wellner, M. Bader, J. Jordan, et al. (2008)
Hypertension 52, 702-707
   Abstract »    Full Text »    PDF »
Targets of Caspase-6 Activity in Human Neurons and Alzheimer Disease.
G. Klaiman, T. L. Petzke, J. Hammond, and A. C. LeBlanc (2008)
Mol. Cell. Proteomics 7, 1541-1555
   Abstract »    Full Text »    PDF »
Spinophilin participates in information transfer at immunological synapses.
O. Bloom, J. J. Unternaehrer, A. Jiang, J.-S. Shin, L. Delamarre, P. Allen, and I. Mellman (2008)
J. Cell Biol. 181, 203-211
   Abstract »    Full Text »    PDF »
Motor Skill Training, but not Voluntary Exercise, Improves Skilled Reaching After Unilateral Ischemic Lesions of the Sensorimotor Cortex in Rats.
M. A. Maldonado, R. P. Allred, E. L. Felthauser, and T. A. Jones (2008)
Neurorehabil Neural Repair 22, 250-261
   Abstract »    PDF »
Selective targeting of the {gamma}1 isoform of protein phosphatase 1 to F-actin in intact cells requires multiple domains in spinophilin and neurabin.
L. C. Carmody, A. J. Baucum II, M. A. Bass, and R. J. Colbran (2008)
FASEB J 22, 1660-1671
   Abstract »    Full Text »    PDF »
Association of Protein Phosphatase 1{gamma}1 with Spinophilin Suppresses Phosphatase Activity in a Parkinson Disease Model.
A. M. Brown, A. J. Baucum, M. A. Bass, and R. J. Colbran (2008)
J. Biol. Chem. 283, 14286-14294
   Abstract »    Full Text »    PDF »
Spinophilin and the immune synapse.
B. Seed and R. Xavier (2008)
J. Cell Biol. 181, 181-183
   Abstract »    Full Text »    PDF »
Gonadotropin-releasing hormone regulates spine density via its regulatory role in hippocampal estrogen synthesis.
J. Prange-Kiel, H. Jarry, M. Schoen, P. Kohlmann, C. Lohse, L. Zhou, and G. M. Rune (2008)
J. Cell Biol. 180, 417-426
   Abstract »    Full Text »    PDF »
Kalirin-7 Is an Essential Component of both Shaft and Spine Excitatory Synapses in Hippocampal Interneurons.
X.-M. Ma, Y. Wang, F. Ferraro, R. E. Mains, and B. A. Eipper (2008)
J. Neurosci. 28, 711-724
   Abstract »    Full Text »    PDF »
Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice.
S. L. Eastwood, L. Lyon, L. George, A. Andrieux, D. Job, and P. J. Harrison (2007)
J Psychopharmacol 21, 635-644
   Abstract »    PDF »
Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors.
X. Wang, W. Zeng, M. S. Kim, P. B. Allen, P. Greengard, and S. Muallem (2007)
EMBO J. 26, 2768-2776
   Abstract »    Full Text »    PDF »
Neuronal polarity is regulated by a direct interaction between a scaffolding protein, Neurabin, and a presynaptic SAD-1 kinase in Caenorhabditis elegans.
W. Hung, C. Hwang, M. D. Po, and M. Zhen (2007)
Development 134, 237-249
   Abstract »    Full Text »    PDF »
Estrogenic Agonist Activity of ICI 182,780 (Faslodex) in Hippocampal Neurons: Implications for Basic Science Understanding of Estrogen Signaling and Development of Estrogen Modulators with a Dual Therapeutic Profile.
L. Zhao, K. O'Neill, and R. D. Brinton (2006)
J. Pharmacol. Exp. Ther. 319, 1124-1132
   Abstract »    Full Text »    PDF »
Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin.
W. Liu, E. Y. Yuen, P. B. Allen, J. Feng, P. Greengard, and Z. Yan (2006)
PNAS 103, 18338-18343
   Abstract »    Full Text »    PDF »
Rac3-induced Neuritogenesis Requires Binding to Neurabin I.
D. Orioli, I. N. Colaluca, M. Stefanini, S. Riva, C. G. Dotti, and F. A. Peverali (2006)
Mol. Biol. Cell 17, 2391-2400
   Abstract »    Full Text »    PDF »
Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens.
K.-W. Lee, Y. Kim, A. M. Kim, K. Helmin, A. C. Nairn, and P. Greengard (2006)
PNAS 103, 3399-3404
   Abstract »    Full Text »    PDF »
Selective Vulnerability of Dopaminergic Neurons to Microtubule Depolymerization.
Y. Ren, W. Liu, H. Jiang, Q. Jiang, and J. Feng (2005)
J. Biol. Chem. 280, 34105-34112
   Abstract »    Full Text »    PDF »
GPS: a comprehensive www server for phosphorylation sites prediction.
Y. Xue, F. Zhou, M. Zhu, K. Ahmed, G. Chen, and X. Yao (2005)
Nucleic Acids Res. 33, W184-W187
   Abstract »    Full Text »    PDF »
{alpha}2-Adrenergic Agonist Enrichment of Spinophilin at the Cell Surface Involves {beta}{gamma} Subunits of Gi Proteins and Is Preferentially Induced by the {alpha}2A-Subtype.
A. E. Brady, Q. Wang, P. B. Allen, M. Rizzo, P. Greengard, and L. E. Limbird (2005)
Mol. Pharmacol. 67, 1690-1696
   Abstract »    Full Text »    PDF »
Neurabin/Protein Phosphatase-1 Complex Regulates Dendritic Spine Morphogenesis and Maturation.
R. T. Terry-Lorenzo, D. W. Roadcap, T. Otsuka, T. A. Blanpied, P. L. Zamorano, C. C. Garner, S. Shenolikar, and M. D. Ehlers (2005)
Mol. Biol. Cell 16, 2349-2362
   Abstract »    Full Text »    PDF »
A dynamin-3 spliced variant modulates the actin/cortactin-dependent morphogenesis of dendritic spines.
N. W. Gray, A. E. Kruchten, J. Chen, and M. A. McNiven (2005)
J. Cell Sci. 118, 1279-1290
   Abstract »    Full Text »    PDF »
Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5).
M. Futter, K. Uematsu, S. A. Bullock, Y. Kim, H. C. Hemmings Jr., A. Nishi, P. Greengard, and A. C. Nairn (2005)
PNAS 102, 3489-3494
   Abstract »    Full Text »    PDF »
Subcellular Distribution of Neurabin Immunolabeling in Primate Prefrontal Cortex: Comparison with Spinophilin.
E. C. Muly, P. Allen, M. Mazloom, Z. Aranbayeva, A. T. Greenfield, and P. Greengard (2004)
Cereb Cortex 14, 1398-1407
   Abstract »    Full Text »    PDF »
Protein Phosphatases and Calcium/Calmodulin-Dependent Protein Kinase II-Dependent Synaptic Plasticity.
R. J. Colbran (2004)
J. Neurosci. 24, 8404-8409
   Full Text »    PDF »
Hippocampal Synapses Depend on Hippocampal Estrogen Synthesis.
O. Kretz, L. Fester, U. Wehrenberg, L. Zhou, S. Brauckmann, S. Zhao, J. Prange-Kiel, T. Naumann, H. Jarry, M. Frotscher, et al. (2004)
J. Neurosci. 24, 5913-5921
   Abstract »    Full Text »    PDF »
Spinophilin Blocks Arrestin Actions in Vitro and in Vivo at G Protein-Coupled Receptors.
Q. Wang, J. Zhao, A. E. Brady, J. Feng, P. B. Allen, R. J. Lefkowitz, P. Greengard, and L. E. Limbird (2004)
Science 304, 1940-1944
   Abstract »    Full Text »    PDF »
A Protein Phosphatase-1{gamma}1 Isoform Selectivity Determinant in Dendritic Spine-associated Neurabin.
L. C. Carmody, P. A. Bauman, M. A. Bass, N. Mavila, A. A. DePaoli-Roach, and R. J. Colbran (2004)
J. Biol. Chem. 279, 21714-21723
   Abstract »    Full Text »    PDF »
Phactrs 1-4: A family of protein phosphatase 1 and actin regulatory proteins.
P. B. Allen, A. T. Greenfield, P. Svenningsson, D. C. Haspeslagh, and P. Greengard (2004)
PNAS 101, 7187-7192
   Abstract »    Full Text »    PDF »
Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice.
C. Li, W. G. Brake, R. D. Romeo, J. C. Dunlop, M. Gordon, R. Buzescu, A. M. Magarinos, P. B. Allen, P. Greengard, V. Luine, et al. (2004)
PNAS 101, 2185-2190
   Abstract »    Full Text »    PDF »
Estrogen Replacement Increases Spinophilin-immunoreactive Spine Number in the Prefrontal Cortex of Female Rhesus Monkeys.
Y. Tang, W. G.M. Janssen, J. Hao, J. A. Roberts, H. McKay, B. Lasley, P. B. Allen, P. Greengard, P. R. Rapp, J. H. Kordower, et al. (2004)
Cereb Cortex 14, 215-223
   Abstract »    Full Text »    PDF »
Functional Diversity of Protein Phosphatase-1, a Cellular Economizer and Reset Button.
H. CEULEMANS and M. BOLLEN (2004)
Physiol Rev 84, 1-39
   Abstract »    Full Text »    PDF »
Kalirin, a Multifunctional Rho Guanine Nucleotide Exchange Factor, Is Necessary for Maintenance of Hippocampal Pyramidal Neuron Dendrites and Dendritic Spines.
X.-M. Ma, J. Huang, Y. Wang, B. A. Eipper, and R. E. Mains (2003)
J. Neurosci. 23, 10593-10603
   Abstract »    Full Text »    PDF »
Spinophilin Stabilizes Cell Surface Expression of {alpha}2B-Adrenergic Receptors.
A. E. Brady, Q. Wang, R. J. Colbran, P. B. Allen, P. Greengard, and L. E. Limbird (2003)
J. Biol. Chem. 278, 32405-32412
   Abstract »    Full Text »    PDF »
IFN-{gamma} Induces High Mobility Group Box 1 Protein Release Partly Through a TNF-Dependent Mechanism.
B. Rendon-Mitchell, M. Ochani, J. Li, J. Han, H. Wang, H. Yang, S. Susarla, C. Czura, R. A. Mitchell, G. Chen, et al. (2003)
J. Immunol. 170, 3890-3897
   Abstract »    Full Text »    PDF »
Phosphorylation of Spinophilin Modulates Its Interaction with Actin Filaments.
L. C. Hsieh-Wilson, F. Benfenati, G. L. Snyder, P. B. Allen, A. C. Nairn, and P. Greengard (2003)
J. Biol. Chem. 278, 1186-1194
   Abstract »    Full Text »    PDF »
Neurabins Recruit Protein Phosphatase-1 and Inhibitor-2 to the Actin Cytoskeleton.
R. T. Terry-Lorenzo, E. Elliot, D. C. Weiser, T. D. Prickett, D. L. Brautigan, and S. Shenolikar (2002)
J. Biol. Chem. 277, 46535-46543
   Abstract »    Full Text »    PDF »
A Novel Mechanism of Dendritic Spine Plasticity Involving Estradiol Induction of Prostaglandin-E2.
S. K. Amateau and M. M. McCarthy (2002)
J. Neurosci. 22, 8586-8596
   Abstract »    Full Text »    PDF »
Serotonin 5-HT1A Receptors Regulate AMPA Receptor Channels through Inhibiting Ca2+/Calmodulin-dependent Kinase II in Prefrontal Cortical Pyramidal Neurons.
X. Cai, Z. Gu, P. Zhong, Y. Ren, and Z. Yan (2002)
J. Biol. Chem. 277, 36553-36562
   Abstract »    Full Text »    PDF »
The Neuronal Actin-binding Proteins, Neurabin I and Neurabin II, Recruit Specific Isoforms of Protein Phosphatase-1 Catalytic Subunits.
R. T. Terry-Lorenzo, L. C. Carmody, J. W. Voltz, J. H. Connor, S. Li, F. D. Smith, S. L. Milgram, R. J. Colbran, and S. Shenolikar (2002)
J. Biol. Chem. 277, 27716-27724
   Abstract »    Full Text »    PDF »
Targeting Protein Phosphatase 1 (PP1) to the Actin Cytoskeleton: the Neurabin I/PP1 Complex Regulates Cell Morphology.
C. J. Oliver, R. T. Terry-Lorenzo, E. Elliott, W. A. C. Bloomer, S. Li, D. L. Brautigan, R. J. Colbran, and S. Shenolikar (2002)
Mol. Cell. Biol. 22, 4690-4701
   Abstract »    Full Text »    PDF »
Regulation of Neurotransmitter Release by Synapsin III.
J. Feng, P. Chi, T. A. Blanpied, Y. Xu, A. M. Magarinos, A. Ferreira, R. H. Takahashi, H.-T. Kao, B. S. McEwen, T. A. Ryan, et al. (2002)
J. Neurosci. 22, 4372-4380
   Abstract »    Full Text »    PDF »
Regulation of GluR1 by the A-Kinase Anchoring Protein 79 (AKAP79) Signaling Complex Shares Properties with Long-Term Depression.
S. J. Tavalin, M. Colledge, J. W. Hell, L. K. Langeberg, R. L. Huganir, and J. D. Scott (2002)
J. Neurosci. 22, 3044-3051
   Abstract »    Full Text »    PDF »
Localization and Regulation of the Tissue Plasminogen Activator-Plasmin System in the Hippocampus.
F. J. Salles and S. Strickland (2002)
J. Neurosci. 22, 2125-2134
   Abstract »    Full Text »    PDF »
Protein phosphatase 1 - targeted in many directions.
P. T. W. Cohen (2002)
J. Cell Sci. 115, 241-256
   Abstract »    Full Text »    PDF »
Genome and Hormones: Gender Differences in Physiology: Invited Review: Estrogens effects on the brain: multiple sites and molecular mechanisms.
B. S. McEwen (2001)
J Appl Physiol 91, 2785-2801
   Abstract »    Full Text »    PDF »
Dendrites.
Y.-N. Jan and L. Y. Jan (2001)
Genes & Dev. 15, 2627-2641
   Full Text »    PDF »
Impaired Conditioned Taste Aversion Learning in Spinophilin Knockout Mice.
C. A. Stafstrom-Davis, C. C. Ouimet, J. Feng, P. B. Allen, P. Greengard, and T. A. Houpt (2001)
Learn. Mem. 8, 272-278
   Abstract »    Full Text »    PDF »
Serotonin Receptors Modulate GABAA Receptor Channels through Activation of Anchored Protein Kinase C in Prefrontal Cortical Neurons.
J. Feng, X. Cai, J. Zhao, and Z. Yan (2001)
J. Neurosci. 21, 6502-6511
   Abstract »    Full Text »    PDF »
Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons.
E. Korkotian and M. Segal (2001)
J. Neurosci. 21, 6115-6124
   Abstract »    Full Text »    PDF »
Tracking the estrogen receptor in neurons: Implications for estrogen-induced synapse formation.
B. McEwen, K. Akama, S. Alves, W. G. Brake, K. Bulloch, S. Lee, C. Li, G. Yuen, and T. A. Milner (2001)
PNAS 98, 7093-7100
   Abstract »    Full Text »    PDF »
Modulation of Amyloid Precursor Protein Metabolism by X11{alpha}/Mint-1: A DELETION ANALYSIS OF PROTEIN-PROTEIN INTERACTION DOMAINS.
H. T. Mueller, J.-P. Borg, B. Margolis, and R. S. Turner (2000)
J. Biol. Chem. 275, 39302-39306
   Abstract »    Full Text »    PDF »
Modulation of amyloid precursor protein metabolism by X11{alpha}/mint-1: a deletion analysis of protein-protein interaction domains.
H. T. Mueller, J.-P. Borg, B. Margolis, and R. S. Turner (2000)
J. Biol. Chem.
   Abstract »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882