Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 97 (17): 9729-9734

Copyright © 2000 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / NEUROBIOLOGY

Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody

Naoko Utsunomiya-Tate*, Ken-ichiro Kubo*,{dagger},{ddagger}, Shin-ichi Tate§, Masatsune Kainosho, Eisaku Katayama||,**, Kazunori Nakajima{dagger},||,{ddagger}{ddagger}, and Katsuhiko Mikoshiba*,{ddagger}

*Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako, Saitama, 351-0198, Japan; {dagger}Department of Molecular Neurobiology, Institute of DNA Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461; ||PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012; {ddagger}Department of Molecular Neurobiology and **Department of Fine Morphology, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639; §Japan Advanced Institute of Science and Technology (JAIST), Hokuriku, Nomi-gun, Ishikawa, 923-1292; and Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, 192-03, Japan

Accepted for publication June 13, 2000.

Received for publication February 1, 2000.

Abstract: Reelin is a key mediator of ordered neuronal alignment in the brain. Here, we demonstrate that Reelin molecules assemble with each other to form a huge protein complex both in vitro and in vivo. The Reelin–Reelin interaction clearly is inhibited by the function-blocking anti-Reelin antibody, CR-50, at a concentration known to inhibit Reelin function. This assembly is mediated by electrostatic interaction of the CR-50 epitope region. Recombinant CR-50 epitope fragments spontaneously constitute a soluble, string-like homopolymer with a regularly repeated structure composed of more than 40 monomers. Mutated Reelin, which lacks the CR-50 epitope region, cannot form a homopolymer and fails to induce efficient tyrosine phosphorylation of Disabled 1 (Dab1), which should occur to transduce the Reelin signal. These data suggest that Reelin exerts its biological function by composing a large protein assembly driven by the CR-50 epitope region, proposing a novel model of the Reelin signaling in neurodevelopment.


{ddagger}{ddagger} To whom reprint requests and correspondence should be addressed at: Department of Molecular Neurobiology, Institute of DNA Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan. E-mail: kazunori{at}jikei.ac.jp.

Communicated by Pasko Rakic, Yale University School of Medicine, New Haven, CT

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.160272497.

Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.160272497

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
ApoER2 processing by presenilin-1 modulates reelin expression.
V. Balmaceda, I. Cuchillo-Ibanez, L. Pujadas, M.-S. Garcia-Ayllon, C. A. Saura, J. Nimpf, E. Soriano, and J. Saez-Valero (2014)
FASEB J 28, 1543-1554
   Abstract »    Full Text »    PDF »
Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system.
G. O. Bodea, J.-H. Spille, P. Abe, A. S. Andersson, A. Acker-Palmer, R. Stumm, U. Kubitscheck, and S. Blaess (2014)
Development 141, 661-673
   Abstract »    Full Text »    PDF »
TIMP-1 inhibits the proteolytic processing of Reelin in experimental epilepsy.
S. Tinnes, J. Ringwald, and C. A. Haas (2013)
FASEB J 27, 2542-2552
   Abstract »    Full Text »    PDF »
Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation.
S. Lutter, S. Xie, F. Tatin, and T. Makinen (2012)
J. Cell Biol. 197, 837-849
   Abstract »    Full Text »    PDF »
Functional Importance of Covalent Homodimer of Reelin Protein Linked via Its Central Region.
N. Yasui, Y. Kitago, A. Beppu, T. Kohno, S. Morishita, H. Gomi, M. Nagae, M. Hattori, and J. Takagi (2011)
J. Biol. Chem. 286, 35247-35256
   Abstract »    Full Text »    PDF »
Reduced Reelin Expression Accelerates Amyloid-{beta} Plaque Formation and Tau Pathology in Transgenic Alzheimer's Disease Mice.
S. Kocherhans, A. Madhusudan, J. Doehner, K. S. Breu, R. M. Nitsch, J.-M. Fritschy, and I. Knuesel (2010)
J. Neurosci. 30, 9228-9240
   Abstract »    Full Text »    PDF »
Differential Functions of ApoER2 and Very Low Density Lipoprotein Receptor in Reelin Signaling Depend on Differential Sorting of the Receptors.
S. Duit, H. Mayer, S. M. Blake, W. J. Schneider, and J. Nimpf (2010)
J. Biol. Chem. 285, 4896-4908
   Abstract »    Full Text »    PDF »
Altered Quality Control in the Endoplasmic Reticulum Causes Cortical Dysplasia in Knock-In Mice Expressing a Mutant BiP.
N. Mimura, S. Yuasa, M. Soma, H. Jin, K. Kimura, S. Goto, H. Koseki, and T. Aoe (2008)
Mol. Cell. Biol. 28, 293-301
   Abstract »    Full Text »    PDF »
The Extremely Conserved C-terminal Region of Reelin Is Not Necessary for Secretion but Is Required for Efficient Activation of Downstream Signaling.
Y. Nakano, T. Kohno, T. Hibi, S. Kohno, A. Baba, K. Mikoshiba, K. Nakajima, and M. Hattori (2007)
J. Biol. Chem. 282, 20544-20552
   Abstract »    Full Text »    PDF »
Structure of a receptor-binding fragment of reelin and mutational analysis reveal a recognition mechanism similar to endocytic receptors.
N. Yasui, T. Nogi, T. Kitao, Y. Nakano, M. Hattori, and J. Takagi (2007)
PNAS 104, 9988-9993
   Abstract »    Full Text »    PDF »
Processing of Reelin by Embryonic Neurons Is Important for Function in Tissue But Not in Dissociated Cultured Neurons.
Y. Jossin, L. Gui, and A. M. Goffinet (2007)
J. Neurosci. 27, 4243-4252
   Abstract »    Full Text »    PDF »
Structure of a signaling-competent reelin fragment revealed by X-ray crystallography and electron tomography.
T. Nogi, N. Yasui, M. Hattori, K. Iwasaki, and J. Takagi (2006)
EMBO J. 25, 3675-3683
   Abstract »    Full Text »    PDF »
Topical Review: Neuronal Migration in Cortical Development.
S. Kanatani, H. Tabata, and K. Nakajima (2005)
J Child Neurol 20, 274-279
   Abstract »    PDF »
Topical Review: Neuronal Migration in Cortical Development.
S. Kanatani, H. Tabata, and K. Nakajima (2004)
J Child Neurol 19, 274-279
   Abstract »    PDF »
Receptor Clustering Is Involved in Reelin Signaling.
V. Strasser, D. Fasching, C. Hauser, H. Mayer, H. H. Bock, T. Hiesberger, J. Herz, E. J. Weeber, J. D. Sweatt, A. Pramatarova, et al. (2004)
Mol. Cell. Biol. 24, 1378-1386
   Abstract »    Full Text »    PDF »
The Central Fragment of Reelin, Generated by Proteolytic Processing In Vivo, Is Critical to Its Function during Cortical Plate Development.
Y. Jossin, N. Ignatova, T. Hiesberger, J. Herz, C. Lambert de Rouvroit, and A. M. Goffinet (2004)
J. Neurosci. 24, 514-521
   Abstract »    Full Text »    PDF »
The Reelin Signaling Pathway: Some Recent Developments.
Y. Jossin, I. Bar, N. Ignatova, F. Tissir, C. L. de Rouvroit, and A. M. Goffinet (2003)
Cereb Cortex 13, 627-633
   Abstract »    Full Text »    PDF »
Reelin Immunoreactivity in the Adult Primate Brain: Intracellular Localization in Projecting and Local Circuit Neurons of the Cerebral Cortex, Hippocampus and Subcortical Regions.
V. Martinez-Cerdeno, M. J. Galazo, C. Cavada, and F. Clasca (2002)
Cereb Cortex 12, 1298-1311
   Abstract »    Full Text »    PDF »
Reelin, Disabled 1, and {beta}1 integrins are required for the formation of the radial glial scaffold in the hippocampus.
E. Forster, A. Tielsch, B. Saum, K. H. Weiss, C. Johanssen, D. Graus-Porta, U. Muller, and M. Frotscher (2002)
PNAS 99, 13178-13183
   Abstract »    Full Text »    PDF »
Reelin Is a Serine Protease of the Extracellular Matrix.
C. C. Quattrocchi, F. Wannenes, A. M. Persico, S. A. Ciafre, G. D'Arcangelo, M. G. Farace, and F. Keller (2002)
J. Biol. Chem. 277, 303-309
   Abstract »    Full Text »
Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse.
W. S. Liu, C. Pesold, M. A. Rodriguez, G. Carboni, J. Auta, P. Lacor, J. Larson, B. G. Condie, A. Guidotti, and E. Costa (2001)
PNAS 98, 3477-3482
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882