Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 97 (8): 4233-4238

Copyright © 2000 by the National Academy of Sciences.


Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2

Xinyi Wu*,{dagger}, Karin Hepner*,{dagger}, Shobha Castelino-Prabhu*, Duc Do*, Marc B. Kaye*, Xiu-Juan Yuan{ddagger}, Jonathan Wood§, Christopher Ross§, Charles L. Sawyers*,{dagger},||, and Young E. Whang{ddagger}

*Department of Medicine, {dagger}Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095; {ddagger}Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and §Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

Accepted for publication February 8, 2000.

Received for publication December 22, 1999.

Abstract: PTEN is a tumor suppressor gene mutated in human cancers. Although many mutations target the phosphatase domain, others create a truncated protein lacking the C-terminal PDZ-binding motif or a protein that extends beyond the PDZ-binding motif. Using the yeast two-hybrid system, we isolated a membrane-associated guanylate kinase family protein with multiple PDZ domains [AIP-1 (atrophin interacting protein 1), renamed MAGI-2 (membrane associated guanylate kinase inverted-2)]. MAGI-2 contains eight potential protein–protein interaction domains and is localized to tight junctions in the membrane of epithelial cells. PTEN binds to MAGI-2 through an interaction between the PDZ-binding motif of PTEN and the second PDZ domain of MAGI-2. MAGI-2 enhances the ability of PTEN to suppress Akt activation. Furthermore, certain PTEN mutants have reduced stability, which is restored by adding the minimal PDZ-binding motif back to the truncated protein. We propose that MAGI-2 improves the efficiency of PTEN signaling through assembly of a multiprotein complex at the cell membrane.

|| To whom reprint requests should be addressed at: 11–934 Factor, UCLA-Hematology/Oncology, 10833 Le Conte Avenue, Los Angeles, CA 90095. E-mail: csawyers{at}

Communicated by Owen N. Witte, University of California, Los Angeles, CA

Molecular profile of head and neck squamous cell carcinomas bearing p16 high phenotype.
T. Rampias, E. Pectasides, M. Prasad, C. Sasaki, P. Gouveris, A. Dimou, P. Kountourakis, C. Perisanidis, B. Burtness, T. Zaramboukas, et al. (2013)
Ann. Onc. 24, 2124-2131
   Abstract »    Full Text »    PDF »
Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis.
D. Bolduc, M. Rahdar, B. Tu-Sekine, S. C. Sivakumaren, D. Raben, L. M. Amzel, P. Devreotes, S. B. Gabelli, and P. Cole (2013)
eLife Sci 2, e00691
   Abstract »    Full Text »    PDF »
Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis.
T. Shibata, M. Nishikawa, S. Matsuoka, and M. Ueda (2012)
J. Cell Sci. 125, 5138-5150
   Abstract »    Full Text »    PDF »
Genetic disruption of Pten in a novel mouse model of tomaculous neuropathy.
S. Goebbels, J. H. Oltrogge, S. Wolfer, G. L. Wieser, T. Nientiedt, A. Pieper, T. Ruhwedel, M. Groszer, M. W. Sereda, and K.-A. Nave (2012)
EMBO Mol Med. 4, 486-499
   Abstract »    Full Text »    PDF »
S-SCAM/MAGI-2 Is an Essential Synaptic Scaffolding Molecule for the GluA2-Containing Maintenance Pool of AMPA Receptors.
E. Danielson, N. Zhang, J. Metallo, K. Kaleka, S. M. Shin, N. Gerges, and S. H. Lee (2012)
J. Neurosci. 32, 6967-6980
   Abstract »    Full Text »    PDF »
PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients.
T. L. Lotan, B. Gurel, S. Sutcliffe, D. Esopi, W. Liu, J. Xu, J. L. Hicks, B. H. Park, E. Humphreys, A. W. Partin, et al. (2011)
Clin. Cancer Res. 17, 6563-6573
   Abstract »    Full Text »    PDF »
Apoptosis regulator through modulating IAP expression (ARIA) controls the PI3K/Akt pathway in endothelial and endothelial progenitor cells.
M. Koide, K. Ikeda, Y. Akakabe, Y. Kitamura, T. Ueyama, S. Matoba, H. Yamada, M. Okigaki, and H. Matsubara (2011)
PNAS 108, 9472-9477
   Abstract »    Full Text »    PDF »
Endosomal Targeting of the Phosphoinositide 3-Phosphatase MTMR2 Is Regulated by an N-terminal Phosphorylation Site.
N. E. Franklin, G. S. Taylor, and P. O. Vacratsis (2011)
J. Biol. Chem. 286, 15841-15853
   Abstract »    Full Text »    PDF »
PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control.
M.-M. Georgescu (2010)
Genes & Cancer 1, 1170-1177
   Abstract »    Full Text »    PDF »
A New Role for PTEN in Regulating Transient Receptor Potential Canonical Channel 6-mediated Ca2+ Entry, Endothelial Permeability, and Angiogenesis.
V. Kini, A. Chavez, and D. Mehta (2010)
J. Biol. Chem. 285, 33082-33091
   Abstract »    Full Text »    PDF »
Loss of PTEN Binding Adapter Protein NHERF1 from Plasma Membrane in Glioblastoma Contributes to PTEN Inactivation.
J. R. Molina, F. C. Morales, Y. Hayashi, K. D. Aldape, and M.-M. Georgescu (2010)
Cancer Res. 70, 6697-6703
   Abstract »    Full Text »    PDF »
PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression.
S. Jurado, M. Benoist, A. Lario, S. Knafo, C. N. Petrok, and J. A. Esteban (2010)
EMBO J. 29, 2827-2840
   Abstract »    Full Text »    PDF »
Functional Interaction of Phosphatase and Tensin Homologue (PTEN) with the E3 Ligase NEDD4-1 during Neuronal Response to Zinc.
Y.-D. Kwak, B. Wang, W. Pan, H. Xu, X. Jiang, and F.-F. Liao (2010)
J. Biol. Chem. 285, 9847-9857
   Abstract »    Full Text »    PDF »
Leptin Regulates AMPA Receptor Trafficking via PTEN Inhibition.
P. R. Moult, A. Cross, S. D. Santos, A.-L. Carvalho, Y. Lindsay, C. N. Connolly, A. J. Irving, N. R. Leslie, and J. Harvey (2010)
J. Neurosci. 30, 4088-4101
   Abstract »    Full Text »    PDF »
Tumor Suppression by PTEN Requires the Activation of the PKR-eIF2{alpha} Phosphorylation Pathway.
Z. Mounir, J. L. Krishnamoorthy, G. P. Robertson, D. Scheuner, R. J. Kaufman, M.-M. Georgescu, and A. E. Koromilas (2009)
Science Signaling 2, ra85
   Abstract »    Full Text »    PDF »
Analysis of PTEN Complex Assembly and Identification of Heterogeneous Nuclear Ribonucleoprotein C as a Component of the PTEN-associated Complex.
S. Mosessian, N. K. Avliyakulov, D. J. Mulholland, P. Boontheung, J. A. Loo, and H. Wu (2009)
J. Biol. Chem. 284, 30159-30166
   Abstract »    Full Text »    PDF »
p85 Associates with Unphosphorylated PTEN and the PTEN-Associated Complex.
R. Rabinovsky, P. Pochanard, C. McNear, S. M. Brachmann, J. S. Duke-Cohan, L. A. Garraway, and W. R. Sellers (2009)
Mol. Cell. Biol. 29, 5377-5388
   Abstract »    Full Text »    PDF »
Interaction of E-cadherin and PTEN Regulates Morphogenesis and Growth Arrest in Human Mammary Epithelial Cells.
M. V. Fournier, J. E. Fata, K. J. Martin, P. Yaswen, and M. J. Bissell (2009)
Cancer Res. 69, 4545-4552
   Abstract »    Full Text »    PDF »
PTEN Acetylation Modulates Its Interaction with PDZ Domain.
T. Ikenoue, K. Inoki, B. Zhao, and K.-L. Guan (2008)
Cancer Res. 68, 6908-6912
   Abstract »    Full Text »    PDF »
Par-3-mediated Junctional Localization of the Lipid Phosphatase PTEN Is Required for Cell Polarity Establishment.
W. Feng, H. Wu, L.-N. Chan, and M. Zhang (2008)
J. Biol. Chem. 283, 23440-23449
   Abstract »    Full Text »    PDF »
New insights into PTEN.
T. Tamguney and D. Stokoe (2007)
J. Cell Sci. 120, 4071-4079
   Abstract »    Full Text »    PDF »
Critical Role of PICT-1, a Tumor Suppressor Candidate, in Phosphatidylinositol 3,4,5-Trisphosphate Signals and Tumorigenic Transformation.
F. Okahara, K. Itoh, A. Nakagawara, M. Murakami, Y. Kanaho, and T. Maehama (2006)
Mol. Biol. Cell 17, 4888-4895
   Abstract »    Full Text »    PDF »
Nuclear Localization of PTEN by a Ran-dependent Mechanism Enhances Apoptosis: Involvement of an N-Terminal Nuclear Localization Domain and Multiple Nuclear Exclusion Motifs.
A. Gil, A. Andres-Pons, E. Fernandez, M. Valiente, J. Torres, J. Cervera, and R. Pulido (2006)
Mol. Biol. Cell 17, 4002-4013
   Abstract »    Full Text »    PDF »
Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain..
F. Deng, M. G. Price, C. F. Davis, M. Mori, and D. L. Burgess (2006)
J. Neurosci. 26, 7875-7884
   Abstract »    Full Text »    PDF »
CIN85 Is Localized at Synapses and Forms a Complex with S-SCAM via Dendrin..
A. Kawata, J. Iida, M. Ikeda, Y. Sato, H. Mori, A. Kansaku, K. Sumita, N. Fujiwara, C. Rokukawa, M. Hamano, et al. (2006)
J. Biochem. 139, 931-939
   Abstract »    Full Text »    PDF »
Targeting protein-protein interactions by rational design: mimicry of protein surfaces.
S. Fletcher and A. D Hamilton (2006)
J R Soc Interface 3, 215-233
   Abstract »    Full Text »    PDF »
PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling.
Y. Takahashi, F. C. Morales, E. L. Kreimann, and M.-M. Georgescu (2006)
EMBO J. 25, 910-920
   Abstract »    Full Text »    PDF »
Claudin-3 and Claudin-4 Expression in Ovarian Epithelial Cells Enhances Invasion and Is Associated with Increased Matrix Metalloproteinase-2 Activity.
R. Agarwal, T. D'Souza, and P. J. Morin (2005)
Cancer Res. 65, 7378-7385
   Abstract »    Full Text »    PDF »
Binding of PTEN to Specific PDZ Domains Contributes to PTEN Protein Stability and Phosphorylation by Microtubule-associated Serine/Threonine Kinases.
M. Valiente, A. Andres-Pons, B. Gomar, J. Torres, A. Gil, C. Tapparel, S. E. Antonarakis, and R. Pulido (2005)
J. Biol. Chem. 280, 28936-28943
   Abstract »    Full Text »    PDF »
Mitochondrial H2O2 Regulates the Angiogenic Phenotype via PTEN Oxidation.
K. M. Connor, S. Subbaram, K. J. Regan, K. K. Nelson, J. E. Mazurkiewicz, P. J. Bartholomew, A. E. Aplin, Y.-T. Tai, J. Aguirre-Ghiso, S. C. Flores, et al. (2005)
J. Biol. Chem. 280, 16916-16924
   Abstract »    Full Text »    PDF »
Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling.
W. von Stein, A. Ramrath, A. Grimm, M. Muller-Borg, and A. Wodarz (2005)
Development 132, 1675-1686
   Abstract »    Full Text »    PDF »
Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication.
C. O'Shea, K. Klupsch, S. Choi, B. Bagus, C. Soria, J. Shen, F. McCormick, and D. Stokoe (2005)
EMBO J. 24, 1211-1221
   Abstract »    Full Text »    PDF »
PTEN as an effector in the signaling of antimigratory G protein-coupled receptor.
T. Sanchez, S. Thangada, M.-T. Wu, C. D. Kontos, D. Wu, H. Wu, and T. Hla (2005)
PNAS 102, 4312-4317
   Abstract »    Full Text »    PDF »
Vinculin Controls PTEN Protein Level by Maintaining the Interaction of the Adherens Junction Protein {beta}-Catenin with the Scaffolding Protein MAGI-2.
M. C. Subauste, P. Nalbant, E. D. Adamson, and K. M. Hahn (2005)
J. Biol. Chem. 280, 5676-5681
   Abstract »    Full Text »    PDF »
Antibody-Based Profiling of the Phosphoinositide 3-Kinase Pathway in Clinical Prostate Cancer.
G. V. Thomas, S. Horvath, B. L. Smith, K. Crosby, L. A. Lebel, M. Schrage, J. Said, J. De Kernion, R. E. Reiter, and C. L. Sawyers (2004)
Clin. Cancer Res. 10, 8351-8356
   Abstract »    Full Text »    PDF »
PTEN regulates motility but not directionality during leukocyte chemotaxis.
R. A. Lacalle, C. Gomez-Mouton, D. F. Barber, S. Jimenez-Baranda, E. Mira, C. Martinez-A., A. C. Carrera, and S. Manes (2004)
J. Cell Sci. 117, 6207-6215
   Abstract »    Full Text »    PDF »
Regulation of PTEN Phosphorylation and Stability by a Tumor Suppressor Candidate Protein.
F. Okahara, H. Ikawa, Y. Kanaho, and T. Maehama (2004)
J. Biol. Chem. 279, 45300-45303
   Abstract »    Full Text »    PDF »
Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans.
M. Cereijido, R. G. Contreras, and L. Shoshani (2004)
Physiol Rev 84, 1229-1262
   Abstract »    Full Text »    PDF »
Human Papillomavirus 16 E6 Oncoprotein Interferences with Insulin Signaling Pathway by Binding to Tuberin.
Z. Lu, X. Hu, Y. Li, L. Zheng, Y. Zhou, H. Jiang, T. Ning, Z. Basang, C. Zhang, and Y. Ke (2004)
J. Biol. Chem. 279, 35664-35670
   Abstract »    Full Text »    PDF »
Endothelial Cell-to-Cell Junctions: Molecular Organization and Role in Vascular Homeostasis.
G. Bazzoni and E. Dejana (2004)
Physiol Rev 84, 869-901
   Abstract »    Full Text »    PDF »
The tight junction: a multifunctional complex.
E. E. Schneeberger and R. D. Lynch (2004)
Am J Physiol Cell Physiol 286, C1213-C1228
   Abstract »    Full Text »    PDF »
Novel Mechanism of PTEN Regulation by Its Phosphatidylinositol 4,5-Bisphosphate Binding Motif Is Critical for Chemotaxis.
M. Iijima, Y. E. Huang, H. R. Luo, F. Vazquez, and P. N. Devreotes (2004)
J. Biol. Chem. 279, 16606-16613
   Abstract »    Full Text »    PDF »
Redox regulation of PI 3-kinase signalling via inactivation of PTEN.
N. R. Leslie, D. Bennett, Y. E. Lindsay, H. Stewart, A. Gray, and C. P. Downes (2003)
EMBO J. 22, 5501-5510
   Abstract »    Full Text »    PDF »
Phosphorylation-regulated Cleavage of the Tumor Suppressor PTEN by Caspase-3: IMPLICATIONS FOR THE CONTROL OF PROTEIN STABILITY AND PTEN-PROTEIN INTERACTIONS.
J. Torres, J. Rodriguez, M. P. Myers, M. Valiente, J. D. Graves, N. K. Tonks, and R. Pulido (2003)
J. Biol. Chem. 278, 30652-30660
   Abstract »    Full Text »    PDF »
Zinc-induced PTEN Protein Degradation through the Proteasome Pathway in Human Airway Epithelial Cells.
W. Wu, X. Wang, W. Zhang, W. Reed, J. M. Samet, Y. E. Whang, and A. J. Ghio (2003)
J. Biol. Chem. 278, 28258-28263
   Abstract »    Full Text »    PDF »
Membrane-binding and activation mechanism of PTEN.
S. Das, J. E. Dixon, and W. Cho (2003)
PNAS 100, 7491-7496
   Abstract »    Full Text »    PDF »
Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase {beta} (RPTP{beta}) and tyrosine-phosphorylated proteins.
K. Adamsky, K. Arnold, H. Sabanay, and E. Peles (2003)
J. Cell Sci. 116, 1279-1289
   Abstract »    Full Text »    PDF »
Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells.
S. Poliak, S. Matlis, C. Ullmer, S. S. Scherer, and E. Peles (2002)
J. Cell Biol. 159, 361-372
   Abstract »    Full Text »    PDF »
PTEN Associates with the Vault Particles in HeLa Cells.
Z. Yu, N. Fotouhi-Ardakani, L. Wu, M. Maoui, S. Wang, D. Banville, and S.-H. Shen (2002)
J. Biol. Chem. 277, 40247-40252
   Abstract »    Full Text »    PDF »
Regulation of G Protein-Coupled Receptor Signaling by Scaffold Proteins.
R. A. Hall and R. J. Lefkowitz (2002)
Circ. Res. 91, 672-680
   Abstract »    Full Text »    PDF »
Interaction of Two Actin-binding Proteins, Synaptopodin and alpha -Actinin-4, with the Tight Junction Protein MAGI-1.
K. M. Patrie, A. J. Drescher, A. Welihinda, P. Mundel, and B. Margolis (2002)
J. Biol. Chem. 277, 30183-30190
   Abstract »    Full Text »    PDF »
PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells.
S. Sun and B. M. Steinberg (2002)
J. Gen. Virol. 83, 1651-1658
   Abstract »    Full Text »    PDF »
The Inducible Expression of the Tumor Suppressor Gene PTEN Promotes Apoptosis and Decreases Cell Size by Inhibiting the PI3K/Akt Pathway in Jurkat T Cells.
Z. Xu, D. Stokoe, L. P. Kane, and A. Weiss (2002)
Cell Growth Differ. 13, 285-296
   Abstract »    Full Text »
Pten signaling in gliomas.
C. B. Knobbe, A. Merlo, and G. Reifenberger (2002)
Neuro Oncology 4, 196-211
   Abstract »    PDF »
Reversible Inactivation of the Tumor Suppressor PTEN by H2O2.
S.-R. Lee, K.-S. Yang, J. Kwon, C. Lee, W. Jeong, and S. G. Rhee (2002)
J. Biol. Chem. 277, 20336-20342
   Abstract »    Full Text »    PDF »
JEAP, a Novel Component of Tight Junctions in Exocrine Cells.
M. Nishimura, M. Kakizaki, Y. Ono, K. Morimoto, M. Takeuchi, Y. Inoue, T. Imai, and Y. Takai (2002)
J. Biol. Chem. 277, 5583-5587
   Abstract »    Full Text »    PDF »
Interaction of Synaptic Scaffolding Molecule and beta -Catenin.
W. Nishimura, I. Yao, J. Iida, N. Tanaka, and Y. Hata (2002)
J. Neurosci. 22, 757-765
   Abstract »    Full Text »    PDF »
Pilt, a Novel Peripheral Membrane Protein at Tight Junctions in Epithelial Cells.
H. Kawabe, H. Nakanishi, M. Asada, A. Fukuhara, K. Morimoto, M. Takeuchi, and Y. Takai (2001)
J. Biol. Chem. 276, 48350-48355
   Abstract »    Full Text »    PDF »
Regulation of PTEN Binding to MAGI-2 by Two Putative Phosphorylation Sites at Threonine 382 and 383.
T. Tolkacheva, M. Boddapati, A. Sanfiz, K. Tsuchida, A. C. Kimmelman, and A. M-L. Chan (2001)
Cancer Res. 61, 4985-4989
   Abstract »    Full Text »    PDF »
Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis.
K. M. Yamada and M. Araki (2001)
J. Cell Sci. 114, 2375-2382
   Abstract »    Full Text »    PDF »
PTEN Induces G1 Cell Cycle Arrest and Decreases Cyclin D3 Levels in Endometrial Carcinoma Cells.
X. Zhu, C.-H. Kwon, P. W. Schlosshauer, L. H. Ellenson, and S. J. Baker (2001)
Cancer Res. 61, 4569-4575
   Abstract »    Full Text »    PDF »
PTEN controls tumor-induced angiogenesis.
S. Wen, J. Stolarov, M. P. Myers, J. D. Su, M. H. Wigler, N. K. Tonks, and D. L. Durden (2001)
PNAS 98, 4622-4627
   Abstract »    Full Text »    PDF »
Stabilization and Productive Positioning Roles of the C2 Domain of PTEN Tumor Suppressor.
M.-M. Georgescu, K. H. Kirsch, P. Kaloudis, H. Yang, N. P. Pavletich, and H. Hanafusa (2000)
Cancer Res. 60, 7033-7038
   Abstract »    Full Text »
Gatekeeper for Endometrium: the PTEN Tumor Suppressor Gene.
I. U. Ali (2000)
J Natl Cancer Inst 92, 861-863
   Full Text »    PDF »
Phosphorylation of the PTEN Tail Acts as an Inhibitory Switch by Preventing Its Recruitment into a Protein Complex.
F. Vazquez, S. R. Grossman, Y. Takahashi, M. V. Rokas, N. Nakamura, and W. R. Sellers (2001)
J. Biol. Chem. 276, 48627-48630
   Abstract »    Full Text »    PDF »
The Tumor Suppressor PTEN Is Phosphorylated by the Protein Kinase CK2 at Its C Terminus. IMPLICATIONS FOR PTEN STABILITY TO PROTEASOME-MEDIATED DEGRADATION.
J. Torres and R. Pulido (2001)
J. Biol. Chem. 276, 993-998
   Abstract »    Full Text »    PDF »
The Tumor Suppressor Gene PTEN Can Regulate Cardiac Hypertrophy and Survival.
G. Schwartzbauer and J. Robbins (2001)
J. Biol. Chem. 276, 35786-35793
   Abstract »    Full Text »    PDF »
beta 1-Adrenergic Receptor Association with the Synaptic Scaffolding Protein Membrane-associated Guanylate Kinase Inverted-2 (MAGI-2). DIFFERENTIAL REGULATION OF RECEPTOR INTERNALIZATION BY MAGI-2 AND PSD-95.
J. Xu, M. Paquet, A. G. Lau, J. D. Wood, C. A. Ross, and R. A. Hall (2001)
J. Biol. Chem. 276, 41310-41317
   Abstract »    Full Text »    PDF »
Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through Its Possible Interaction with Claudin-1 and Junctional Adhesion Molecule.
Y. Hamazaki, M. Itoh, H. Sasaki, M. Furuse, and S. Tsukita (2002)
J. Biol. Chem. 277, 455-461
   Abstract »    Full Text »    PDF »
PTEN controls tumor-induced angiogenesis.
S. Wen, J. Stolarov, M. P. Myers, J. D. Su, M. H. Wigler, N. K. Tonks, and D. L. Durden (2001)
PNAS 98, 4622-4627
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882