Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (16): 9353-9358

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / MICROBIOLOGY

Globin-coupled sensors: A class of heme-containing sensors in Archaea and Bacteria

Shaobin Hou*, Tracey Freitas*, Randy W. Larsen{dagger}, Mikhail Piatibratov*, Victor Sivozhelezov*, Amy Yamamoto*, Ella A. Meleshkevitch{ddagger}, Mike Zimmer§, George W. Ordal§, and Maqsudul Alam*,||

Departments of *Microbiology and {dagger}Chemistry, University of Hawaii, Honolulu, HI 96822; {ddagger}Whitney Laboratory, University of Florida, St. Augustine, FL 32080; §Department of Biochemistry, University of Illinois, Urbana, IL 61801; and Marine Bioproducts Engineering Center, Honolulu, HI 96822

Received for publication April 13, 2001.

Abstract: The recently discovered prokaryotic signal transducer HemAT, which has been described in both Archaea and Bacteria, mediates aerotactic responses. The N-terminal regions of HemAT from the archaeon Halobacterium salinarum (HemAT-Hs) and from the Gram-positive bacterium Bacillus subtilis (HemAT-Bs) contain a myoglobin-like motif, display characteristic heme–protein absorption spectra, and bind oxygen reversibly. Recombinant HemAT-Hs and HemAT-Bs shorter than 195 and 176 residues, respectively, do not bind heme effectively. Sequence homology comparisons and three-dimensional modeling predict that His-123 is the proximal heme-binding residue in HemAT from both species. The work described here used site-specific mutagenesis and spectroscopy to confirm this prediction, thereby providing direct evidence for a functional domain of prokaryotic signal transducers that bind heme in a globin fold. We postulate that this domain is part of a globin-coupled sensor (GCS) motif that exists as a two-domain transducer having no similarity to the PER-ARNT-SIM (PAS)-domain superfamily transducers. Using the GCS motif, we have identified several two-domain sensors in a variety of prokaryotes. We have cloned, expressed, and purified two potential globin-coupled sensors and performed spectral analysis on them. Both bind heme and show myoglobin-like spectra. This observation suggests that the general function of GCS-type transducers is to bind diatomic oxygen and perhaps other gaseous ligands, and to transmit a conformational signal through a linked signaling domain.

Key Words: proximal histidine • transducer


|| To whom reprint requests should be addressed. E-mail: alam{at}hawaii.edu.

Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved May 22, 2001

This paper was submitted directly (Track II) to the PNAS office.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Heme-based Globin-coupled Oxygen Sensors: Linking Oxygen Binding to Functional Regulation of Diguanylate Cyclase, Histidine Kinase, and Methyl-accepting Chemotaxis.
M. Martinkova, K. Kitanishi, and T. Shimizu (2013)
J. Biol. Chem. 288, 27702-27711
   Abstract »    Full Text »    PDF »
Widespread Occurrence of N-Terminal Acylation in Animal Globins and Possible Origin of Respiratory Globins from a Membrane-Bound Ancestor.
M. Blank and T. Burmester (2012)
Mol. Biol. Evol. 29, 3553-3561
   Abstract »    Full Text »    PDF »
Site-specific Protein Dynamics in Communication Pathway from Sensor to Signaling Domain of Oxygen Sensor Protein, HemAT-Bs: TIME-RESOLVED ULTRAVIOLET RESONANCE RAMAN STUDY.
S. F. El-Mashtoly, M. Kubo, Y. Gu, H. Sawai, S. Nakashima, T. Ogura, S. Aono, and T. Kitagawa (2012)
J. Biol. Chem. 287, 19973-19984
   Abstract »    Full Text »    PDF »
A Membrane-bound Hemoglobin from Gills of the Green Shore Crab Carcinus maenas.
B. Ertas, L. Kiger, M. Blank, M. C. Marden, and T. Burmester (2011)
J. Biol. Chem. 286, 3185-3193
   Abstract »    Full Text »    PDF »
What is the function of neuroglobin?.
T. Burmester and T. Hankeln (2009)
J. Exp. Biol. 212, 1423-1428
   Abstract »    Full Text »    PDF »
Protein Conformation Changes of HemAT-Bs upon Ligand Binding Probed by Ultraviolet Resonance Raman Spectroscopy.
S. F. El-Mashtoly, Y. Gu, H. Yoshimura, S. Yoshioka, S. Aono, and T. Kitagawa (2008)
J. Biol. Chem. 283, 6942-6949
   Abstract »    Full Text »    PDF »
Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haem-reactivity.
M. Nardini, A. Pesce, L. Thijs, J. A. Saito, S. Dewilde, M. Alam, P. Ascenzi, M. Coletta, C. Ciaccio, L. Moens, et al. (2008)
EMBO Rep. 9, 157-163
   Abstract »    Full Text »    PDF »
Novel Heme-based Oxygen Sensor with a Revealing Evolutionary History.
O. V. Moskvin, S. Kaplan, M.-A. Gilles-Gonzalez, and M. Gomelsky (2007)
J. Biol. Chem. 282, 28740-28748
   Abstract »    Full Text »    PDF »
Functional Analysis of Nine Putative Chemoreceptor Proteins in Sinorhizobium meliloti.
V. M. Meier, P. Muschler, and B. E. Scharf (2007)
J. Bacteriol. 189, 1816-1826
   Abstract »    Full Text »    PDF »
OmcF, a Putative c-Type Monoheme Outer Membrane Cytochrome Required for the Expression of Other Outer Membrane Cytochromes in Geobacter sulfurreducens.
B.-C. Kim, C. Leang, Y.-H. R. Ding, R. H. Glaven, M. V. Coppi, and D. R. Lovley (2005)
J. Bacteriol. 187, 4505-4513
   Abstract »    Full Text »    PDF »
CHEMOTAXIS-GUIDED MOVEMENTS IN BACTERIA.
R. Lux and W. Shi (2004)
Critical Reviews in Oral Biology & Medicine 15, 207-220
   Abstract »    Full Text »    PDF »
Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea.
H. Szurmant and G. W. Ordal (2004)
Microbiol. Mol. Biol. Rev. 68, 301-319
   Abstract »    Full Text »    PDF »
Ancestral hemoglobins in Archaea.
T. A. K. Freitas, S. Hou, E. M. Dioum, J. A. Saito, J. Newhouse, G. Gonzalez, M.-A. Gilles-Gonzalez, and M. Alam (2004)
PNAS 101, 6675-6680
   Abstract »    Full Text »    PDF »
The spatial orientation of Helicobacter pylori in the gastric mucus.
S. Schreiber, M. Konradt, C. Groll, P. Scheid, G. Hanauer, H.-O. Werling, C. Josenhans, and S. Suerbaum (2004)
PNAS 101, 5024-5029
   Abstract »    Full Text »    PDF »
DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR.
D. K. Saini, V. Malhotra, D. Dey, N. Pant, T. K. Das, and J. S. Tyagi (2004)
Microbiology 150, 865-875
   Abstract »    Full Text »    PDF »
Functionally Critical Elements of CooA-Related CO Sensors.
H. Youn, R. L. Kerby, M. Conrad, and G. P. Roberts (2004)
J. Bacteriol. 186, 1320-1329
   Abstract »    Full Text »    PDF »
Binding of Oxygen and Carbon Monoxide to a Heme-regulated Phosphodiesterase from Escherichia coli: KINETICS AND INFRARED SPECTRA OF THE FULL-LENGTH WILD-TYPE ENZYME, ISOLATED PAS DOMAIN, AND MET-95 MUTANTS.
S. Taguchi, T. Matsui, J. Igarashi, Y. Sasakura, Y. Araki, O. Ito, S. Sugiyama, I. Sagami, and T. Shimizu (2004)
J. Biol. Chem. 279, 3340-3347
   Abstract »    Full Text »    PDF »
Myoglobin: The hydrogen atom of biology and a paradigm of complexity.
H. Frauenfelder, B. H. McMahon, and P. W. Fenimore (2003)
PNAS 100, 8615-8617
   Full Text »    PDF »
Degradation of a Caulobacter Soluble Cytoplasmic Chemoreceptor Is ClpX Dependent.
I. Potocka, M. Thein, M. Osteras, U. Jenal, and M. R. K. Alley (2002)
J. Bacteriol. 184, 6635-6641
   Abstract »    Full Text »    PDF »
Characterization of a Direct Oxygen Sensor Heme Protein from Escherichia coli. EFFECTS OF THE HEME REDOX STATES AND MUTATIONS AT THE HEME-BINDING SITE ON CATALYSIS AND STRUCTURE.
Y. Sasakura, S. Hirata, S. Sugiyama, S. Suzuki, S. Taguchi, M. Watanabe, T. Matsui, I. Sagami, and T. Shimizu (2002)
J. Biol. Chem. 277, 23821-23827
   Abstract »    Full Text »    PDF »
Resonance Raman and Ligand Binding Studies of the Oxygen-sensing Signal Transducer Protein HemAT from Bacillus subtilis.
S. Aono, T. Kato, M. Matsuki, H. Nakajima, T. Ohta, T. Uchida, and T. Kitagawa (2002)
J. Biol. Chem. 277, 13528-13538
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882