Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (20): 11003-11008

Copyright © 2001 by the National Academy of Sciences.

Colloquium Paper


COLLOQUIUM PAPER

Presynaptic kainate receptors at hippocampal mossy fiber synapses

Dietmar Schmitz*, Jack Mellor*, Matthew Frerking{dagger},{ddagger}, and Roger A. Nicoll*,§

*Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, CA 94143; and {dagger}Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720

Abstract: Hippocampal mossy fibers, which are the axons of dentate granule cells, form powerful excitatory synapses onto the proximal dendrites of CA3 pyramidal cells. It has long been known that high-affinity binding sites for kainate, a glutamate receptor agonist, are present on mossy fibers. Here we summarize recent experiments on the role of these presynaptic kainate receptors (KARs). Application of kainate has a direct effect on the amplitude of the extracellularly recorded fiber volley, with an enhancement by low concentrations and a depression by high concentrations. These effects are mediated by KARs, because they persist in the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-selective antagonist GYKI 53655, but are blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/KAR antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and the KAR antagonist SYM2081. The effects on the fiber volley are most likely caused by a depolarization of the fibers via the known ionotropic actions of KARs, because application of potassium mimics the effects. In addition to these effects on fiber excitability, low concentrations of kainate enhance transmitter release, whereas high concentrations depress transmitter release. Importantly, the synaptic release of glutamate from mossy fibers also activates these presynaptic KARs, causing an enhancement of the fiber volley and a facilitation of release that lasts for many seconds. This positive feedback contributes to the dramatic frequency facilitation that is characteristic of mossy fiber synapses. It will be interesting to determine how widespread facilitatory presynaptic KARs are at other synapses in the central nervous system.


{ddagger} Present address: Neurological Sciences Institute, Oregon Health Sciences University, Beaverton, OR 97006.

§ To whom reprint requests should be addressed. E-mail: nicoll{at}phy.ucsf.edu.

This paper results from the Inaugural Arthur M. Sackler Colloquium of the National Academy of Sciences, "Neural Signaling," held February 15–17, 2001, at the National Academy of Sciences in Washington, DC.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Anxiety-Like Behavior of Prenatally Stressed Rats Is Associated with a Selective Reduction of Glutamate Release in the Ventral Hippocampus.
J. Marrocco, J. Mairesse, R. T. Ngomba, V. Silletti, G. Van Camp, H. Bouwalerh, M. Summa, A. Pittaluga, F. Nicoletti, S. Maccari, et al. (2012)
J. Neurosci. 32, 17143-17154
   Abstract »    Full Text »    PDF »
Calcium-Dependent Isoforms of Protein Kinase C Mediate Glycine-Induced Synaptic Enhancement at the Calyx of Held.
Y. Chu, D. Fioravante, M. Thanawala, M. Leitges, and W. G. Regehr (2012)
J. Neurosci. 32, 13796-13804
   Abstract »    Full Text »    PDF »
Vesicular Zinc Regulates the Ca2+ Sensitivity of a Subpopulation of Presynaptic Vesicles at Hippocampal Mossy Fiber Terminals.
N. Lavoie, D. V. Jeyaraju, M. R. Peralta III, L. Seress, L. Pellegrini, and K. Toth (2011)
J. Neurosci. 31, 18251-18265
   Abstract »    Full Text »    PDF »
Presynaptic Kainate Receptor Activation Preserves Asynchronous GABA Release Despite the Reduction in Synchronous Release from Hippocampal Cholecystokinin Interneurons.
M. I. Daw, K. A. Pelkey, R. Chittajallu, and C. J. McBain (2010)
J. Neurosci. 30, 11202-11209
   Abstract »    Full Text »    PDF »
In the Developing Rat Hippocampus, Endogenous Activation of Presynaptic Kainate Receptors Reduces GABA Release from Mossy Fiber Terminals.
M. D. Caiati, S. Sivakumaran, and E. Cherubini (2010)
J. Neurosci. 30, 1750-1759
   Abstract »    Full Text »    PDF »
Contrary roles of kainate receptors in transmitter release at corticothalamic synapses onto thalamic relay and reticular neurons.
M. Miyata and K. Imoto (2009)
J. Physiol. 587, 999-1012
   Abstract »    Full Text »    PDF »
The GABAergic projection of the dentate gyrus to hippocampal area CA3 of the rat: pre- and postsynaptic actions after seizures.
M. Trevino and R. Gutierrez (2005)
J. Physiol. 567, 939-949
   Abstract »    Full Text »    PDF »
Transient Depression of Excitatory Synapses on Interneurons Contributes to Epileptiform Bursts During Gamma Oscillations in the Mouse Hippocampal Slice.
R. D. Traub, I. Pais, A. Bibbig, F. E.N. LeBeau, E. H. Buhl, H. Garner, H. Monyer, and M. A. Whittington (2005)
J Neurophysiol 94, 1225-1235
   Abstract »    Full Text »    PDF »
Developmental Changes in AMPA and Kainate Receptor-Mediated Quantal Transmission at Thalamocortical Synapses in the Barrel Cortex.
N. J. Bannister, T. A. Benke, J. Mellor, H. Scott, E. Gurdal, J. W. Crabtree, and J. T. R. Isaac (2005)
J. Neurosci. 25, 5259-5271
   Abstract »    Full Text »    PDF »
Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways.
S. Martin and J. M. Henley (2004)
EMBO J. 23, 4749-4759
   Abstract »    Full Text »    PDF »
Attenuated Plasticity of Postsynaptic Kainate Receptors in Hippocampal CA3 Pyramidal Neurons.
K. Ito, A. Contractor, and G. T. Swanson (2004)
J. Neurosci. 24, 6228-6236
   Abstract »    Full Text »    PDF »
Metabotropic Regulation of Intrinsic Excitability by Synaptic Activation of Kainate Receptors.
Z. Melyan, B. Lancaster, and H. V. Wheal (2004)
J. Neurosci. 24, 4530-4534
   Abstract »    Full Text »    PDF »
Distribution of Kainate Receptor Subunits at Hippocampal Mossy Fiber Synapses.
M. Darstein, R. S. Petralia, G. T. Swanson, R. J. Wenthold, and S. F. Heinemann (2003)
J. Neurosci. 23, 8013-8019
   Abstract »    Full Text »    PDF »
Alcohol potently inhibits the kainate receptor-dependent excitatory drive of hippocampal interneurons.
M. Carta, O. J. Ariwodola, J. L. Weiner, and C. F. Valenzuela (2003)
PNAS 100, 6813-6818
   Abstract »    Full Text »    PDF »
Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat.
C. Labrakakis, C.-K. Tong, T. Weissman, C. Torsney, and A. B MacDermott (2003)
J. Physiol. 549, 131-142
   Abstract »    Full Text »    PDF »
Solution Structure and Function of the "Tandem Inactivation Domain" of the Neuronal A-type Potassium Channel Kv1.4.
R. Wissmann, W. Bildl, D. Oliver, M. Beyermann, H.-R. Kalbitzer, D. Bentrop, and B. Fakler (2003)
J. Biol. Chem. 278, 16142-16150
   Abstract »    Full Text »    PDF »
Loss of Kainate Receptor-Mediated Heterosynaptic Facilitation of Mossy-Fiber Synapses in KA2-/- Mice.
A. Contractor, A. W. Sailer, M. Darstein, C. Maron, J. Xu, G. T. Swanson, and S. F. Heinemann (2003)
J. Neurosci. 23, 422-429
   Abstract »    Full Text »    PDF »
Presynaptic Ca2+ Entry Is Unchanged during Hippocampal Mossy Fiber Long-Term Potentiation.
H. Kamiya, K. Umeda, S. Ozawa, and T. Manabe (2002)
J. Neurosci. 22, 10524-10528
   Abstract »    Full Text »    PDF »
Kainate Receptor-Dependent Short-Term Plasticity of Presynaptic Ca2+ Influx at the Hippocampal Mossy Fiber Synapses.
H. Kamiya, S. Ozawa, and T. Manabe (2002)
J. Neurosci. 22, 9237-9243
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882